The World in Different Perspectives: Rebuilding Lessons after a Crisis

Dr. Rodrigo M. Velasco
Dr. Karen Joyce G. Cayamanda
editors
Disclaimer

This book is a collection of research articles written by different authors. The authenticity of the data and information is the sole responsibility of the authors. Furthermore, the standpoint and perspective of the authors as expressed in their research articles do not necessarily reflect the stance of the publisher.

Copyright ©2021
Institute of Industry and Academic Research Incorporated

ISBN - 978-621-96514-0-0

All rights reserved. No part of this book may be reproduced or used in any manner without the prior written permission of the copyright owner, except for the use of brief quotations.

To request permissions, contact the publisher at publications@iiari.org.

Published by:
Institute of Industry and Academic Research Incorporated
South Spring Village, Bukal Sur
Candelaria, Quezon, Philippines
Postal Code 4323
Contact Numbers: (042) 785-0694 • (+63) 916 387 3537
Visit the website https://iiari.org

Cover design by Dino V. Torres
Preface

The world is in chaos. The emergence of COVID-19 pandemic created the havoc that all parts of the globe had to deal with. In addition, there are still other personal and social crises that everyone endures.

Rebuilding Lessons after a Crisis attempts to present the whys, whats and hows of humanity’s risk perception across the world as we embark on this challenging journey and help define the most appropriate and most effective risk-related behaviors for survival.

The current pandemic has brought about the abrupt shift in all sectors of the society in different parts of the world. It has resulted to immediate adjustments and development of coping mechanisms to transcend beyond the challenges of this pandemic. Like any other crisis, the current situation taught us to reflect and manage its overwhelming effects.

This book compiles articles that reflect the different perspectives in varied concerns such as health, economy, education, and social transformations. Its impact to the physical, emotional, psychological and financial conditions of humanity across the world are also presented.

Part I as the opening chapter attempts to describe the situation in terms of how a crisis has been evaluated in different lenses as to the risk perception and the risk related behaviors as to how various sectors have adapted to the situation.

Part II describes the varied effects of the pandemic and the adjustments and coping responses manifested by the different sectors.

Part III offers the strategic actions and coping mechanisms that can help recover and sustain ways of life in these challenging times.
About the editors

Dr. Rodrigo M. Velasco has a multi-cultural perspective of education and research having worked as a professor and administrator in the Philippines, CNMI, USA and Sultanate of Oman. His orientation on multiculturalism and diversity trained him to cope with different cultural and geographical settings. He is currently an assistant professor of business management and accounting at Gulf College, Sultanate of Oman. As an academician, he has professional qualifications such as Doctor of Business Administration, Diploma in Strategic Management and Leadership from School of Business London, and Certified Human Resource Professional and Certified Marketing Professional from Qualifi, United Kingdom. As a researcher, he is the founding president of the Institute of Industry and Academic Research Incorporated as a platform for open access publications.

Dr. Karen Joyce G. Cayamanda is an Associate Professor in Communication from the University of the Philippines Mindanao, with a 23-year teaching experience and a 16-year experience as University Registrar, Vice Chancellor for Academic Affairs and currently Vice Chancellor for Administration. She is a graduate of UPLB (BA Comm Arts, 1993; MA Comm Arts, 2000 and PhD Development Studies, 2019). She is a grantee of the PhD graduate studies scholarship under the Commission on Higher Education (CHED) and a PhD research scholarship recipient under the Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) and a PhD fellow of the Doctoral Studies Program of the University of the Philippines. She is the founding member of the Philippine Academic Society for Climate and Disaster Resilience (PASCDR), Board Member of the Philippine Association of Media Educators (PACE) for 2021-2022 and Local Fellow and Director for Conferences and Events of the Institute of Industry and Academic Research Incorporated (IIARI).
Featured authors:

Associate Professor Hiroko Kanoh
Hiroko Kanoh is an associate professor in the Institute of Arts and Sciences National University Corporation Yamagata University, Yamagata prefecture in Japan. She graduated Master's program at Tokyo Gakugei University and the doctorate program at Waseda University, Tokyo. Her areas of specialization are educational technology, cyber psychology and ICT education. She has more than 20 international and 100 national publications and 30 authored books. She was awarded the Culture, Sports, Science and Technology Minister's Commendation in the field of science and technology in 2010.

Surbhi Chandra
Surbhi Chandra is a psychologist and an author. She has numerous chapters published in national and international books. She has post graduate in Clinical Psychology and bachelor's in Clinical Psychology from Amity University, Gurgaon. Currently, she is preparing for her MPhil in Clinical Psychology. As an aspiring clinical psychologist, she is fascinated by abnormalities of human and animal behaviour. She is a co-founder of the organisation PsychProbe and works towards spreading mental health awareness and the importance of research in psychology. She also looks forward to starting an organization for animal welfare.

Vooturi Lasya
Vooturi Lasya is a psychologist and behaviour therapist in child development center, Hyderabad, India. She completed her master's in Counselling Psychology and bachelor's degree in Clinical Psychology from Amity University, Gurgaon. She is interested in working with children with disabilities as she believes that every child has potential and can overcome all the obstacles caused by the disability, if given the right and timely intervention.

Megha Garg
Megha Garg completed her master’s in Clinical Psychology and bachelor’s degree in Clinical Psychology from Amity University, Gurgaon. Her strong suit is developmental psychology with a special focus on parental acceptance, academic achievement and self-evaluation of the child.
Kavya Ahuja
Kavya Ahuja completed her master's in Clinical Psychology and bachelor's degree in Clinical Psychology from Amity University, Gurgaon. She is interested in exploring the research perspective in clinical psychology and studying individual differences. She believes that everyone should know themselves and their purpose. She gives equal priority to physical and mental health, and also tries to eradicate mental health taboo in India. She has national and international publications. She is a founder of Psychprobe which promotes the research work in the psychology field and works towards the awareness of mental health in young minds.

Pauline B. Malabanan
Pauline B. Malabanan is a graduate of BS Human Ecology major in Social Technology in the Department of Social Development Services – University of the Philippines – Los Banos. She has been practicing human resources since 2017 and is now currently connected in a non-government organization assisting persons with disabilities. She is also engaged in community work organizing person with psychosocial disabilities as she is diagnosed with one. She is an active speaker in mental awareness raising and mental health advocacy. Right now, she is applying in MS Social Work in University of the Philippines – Diliman to hone her skills in community work and organizing.

Dr. Emilia S. Visco
Dr. Emilia S. Visco is a Professor at the Department of Social Development Services (DSDS), College of Human Ecology (CHE), University of the Philippines. She was a former two-term Department Chair of DSDS, served as CHE Coordinator for Research and Extension, program and project leaders of several research projects. Dr. Visco has a BS degree in Development Communication, MS in Development Communication and a PhD in Extension Education. She has numerous peer-reviewed/Scopus indexed journal publications, international and national chapters in a book, manuals and other publications, editorial board member and article reviewers to national and internationally published and indexed journals.
Maj Marco R. Publico
Maj. Marco R. Publico is a member of the Corps of Professors, Armed Forces of the Philippines. He is currently assigned at the Philippine Military Academy where he teaches social science subjects. He graduated from the University of the Philippines Baguio where he took up Bachelor of Arts in Social Sciences, Majors in Psychology and Political Science. He took up Master of Science in Guidance and Counseling at Saint Louis University where he graduated Cum Laude. Currently, he is in the process of finishing his doctorate degree in Educational Management at the University of the Cordilleras. Being a Registered Guidance Counselor, he previously headed the PMA Cadet Welfare Office in providing guidance and counseling services to the cadets. Maj. Publico has written various articles and researches in the areas of Filipino Psychology, Social Psychology, Psychological Testing, Educational Psychology, and Educational Management.

Ged Xavier A. Fruto
Ged Xavier Fruto is a graduate of BA Communication Arts from the University of the Philippines Mindanao. Prior to finishing his studies, he worked in the business process outsourcing industry which honed his communication skills especially in haggling with clients and delivering a clear message to his team. As a member of a few philanthropic organizations, he has also been actively involved in community services such as donation drives, environmental campaigns, and educational programs. His background in communication has helped him serve his purpose in these organizations. Currently, he is a junior research assistant in UP Mindanao and hopes to continue and improve his skills in the research field before pursuing further studies.

Jherwin P. Hermosa
Jherwin P. Hermosa is a faculty member and ITSO Coordinator in the College of Arts and Sciences at the Laguna State Polytechnic University, San Pablo City Campus. He is teaching philosophy and social science subjects both in undergraduate and graduate programs. He is currently taking Doctorate Degree in Educational Management.
Md. Alamgir Hossain
Md. Alamgir Hossain is a lecturer at the Department of Computer Science and Engineering, Prime University, Dhaka 1216, Bangladesh. He completed his BSc in Computer Science & Engineering from Jashore University of Science & Technology. He is currently a Master of Science (MSc) student of Information and Communication Technology (ICT) at Bangladesh University of Engineering Technology (BUET). As a researcher and writer, he published papers and book chapters in different international publications. His research mainly focuses on cloud computing, cyber security, data security and cyber bullying among others.

Portia R. Marasigan, PhD
Portia R. Marasigan, Ph.D. is an Associate Professor at the Laguna State Polytechnic University, San Pablo City campus, San Pablo City in the Philippines. She is a graduate of Doctor of Philosophy in Psychology. She authored several journal publications, presented papers in the international conferences and served as reviewers and editorial board in international journals.

Thessalonica M. Sinohin
Thessalonica M. Sinohin took Bachelor of Science in Industrial Technology major in Food Technology at Laguna State Polytechnic University San Pablo City Campus. She also finished Master of Science in Family Resource Management at University of the Philippines Los Baños last 2017. She taught high school Technology and Livelihood Education for 2 years and acted as a guidance counsellor at a private school. Currently, she is an instructor and Extension Unit Head at the College of Industrial Technology of Laguna State Polytechnic University San Pablo City Campus.

Farhana Yasmin
Farhana Yasmin is a final year student at the Sociology department of Barishal University, Bangladesh. She is a writer, social worker and volunteer. As she is passionate about writing, several of her columns, features, opinions and letters were published in many national and international newspapers and magazines. She took advantage of the COVID-19 pandemic situation to keep her accustomed to writing and research.
Saifullahi Adam Bayero
Saifullahi Adam Bayero is currently serving as Trade, Development Operation and Compliance Coordinator at Combine Telecoms Solution Network Limited. He is an Ambassador of the World Literacy Foundation, Impact Youth Sustainability, Volunteer, Nigerian Youth SDG and served as a Graduate Assistant at Department of Business Administration, Federal University Gashu’a. He holds a Bachelor of Science in Business Administration from Bayero University, Kano. He is a member of the National Institute of Management Chartered, Associate Member, Chartered Institute of Human Resources Management and a Certified Human Resources Management Professional. As a promising researcher, Bayero has published several papers in international publications.

Dr. Adams Adeiza
Dr. Adams Adeiza is currently the director of Global Entrepreneurship Research and Innovation Center and a senior lecturer at University Malaysia Kelant. He is an award winning academic and serial entrepreneur. His work as a leadership, entrepreneurship and innovation coach as well as mentor many young people and entrepreneurs has earned him many accolade. Adams is an SME Growth Expert, Business Development Specialist, Digital Transformation Strategist and Data Analyst, Leadership and Entrepreneurship Coach, Franchising and Franchise Operation Consultant, Competitive Strategist, and Creativity and Innovation Coach. He published several papers in a high impact journals indexed in Scopus and Web of Science.
Table of Contents

Part 1 – The Nature and Extent of Crisis

Classification of the Transition Patterns of the Number of COVID-19 Patients
Hiroko Kanoh .. 2

Mental Health in Diverse Population
Surbhi Chandra, Vooturi Lasya, Megha Garg & Kavya Ahuja .. 17

Resilience in community urbanization
Pauline B. Malabanan & Emilia S. Visco, PhD .. 30

Mental health and the teaching profession
Marco R. Publico .. 40

The social amplification of risk, risk perception, and risk-related behavior
Ged Xavier A. Fruto .. 53

Part 2 – The Varying Effects of Crisis

The Socialization and Self-acceptance of the Extrajudicial Killings’ Left behind Families
Jherwin P. Hermosa .. 85

Cyber Bullying Tendency among Young Generation
Md. Alamgir Hossain .. 100

Cognitive Vulnerabilities and Depression of Children with Single Parents
Portia R. Marasigan, Ph.D .. 111

Elderly Parent Caring for an Adult with Down syndrome
Thessalonica M. Sinohin .. 124
Part 3 – The Strategies to Overcome a Crisis

Theoretical Perspective on Covid-19 Related Social Problems
Farhana Yasmin...141

Personalities Characteristics and Entrepreneurial Success
Saifullahi Adam Bayero & Adams Adeiza...............................156

Brief cognitive restructuring and cognitive defusion techniques
Portia R. Marasigan, Ph.D...174
Classification of the Transition Patterns of the Number of COVID-19 Patients

Hiroko Kanoh

Introduction

The presence of COVID-19 was discovered at the end of 2019, causing a global pandemic starting in early 2020 with the crisis on-going for over a year. The unpredictable nature of the spread of this virus has brought great uncertainty within societies as our knowledge develops about the nature of this virus and its interplay with societal responses (Atchison et al. 2020; Verity et al. 2020). As a result of the COVID-19 pandemic, many school districts have closed for the remainder of the academic year (Phelps & Sperry, 2020). Suspension of face-to-face instruction in schools during the COVID-19 pandemic has led to concerns about sequences for students’ learning (Engzell, et al., 2021). All over the world, the terms ‘COVID-19’ and ‘LOCKDOWN’ have been thrown about. Figure 1 shows the percentage of searches for both terms on Google between January 2020 and June 2021. The data was extracted using Google Trends and processed in Excel: (number of searches) ÷ (standard value) was used as the relative value, namely, the data with the highest number of searches in the data was set as 100% with the rest having (data) ÷ (data with the highest number of searches) represented and graphed as the percentage. Consequently, the unit of the vertical axis of the graph is the percentage. The correlation coefficient between the two terms is $r=0.6$, indicating a correlation. In particular, the large spikes around March 2020 almost overlap. ‘LOCKDOWN’ is probably because it was thought to be a reasonable countermeasure that could be taken immediately against a virus of which nothing was known yet.
The measures taken varied from countries with strict lockdown policies to countries with more relaxed policies. A strict kind of lockdown was imposed in Wuhan, Hubei province of China. During home confinement due to lockdown, people face multidimensional issues (Sang et al., 2021). Veria et al. (2020) analyzed data on Covid-19 cases of eight majorly affected countries, including China, Italy, Iran, Germany, France, Spain, South Korea, and Japan (Khosrawipour et al., 2020). In England, it is estimated that around 9 in 10 adults, or 91.9% of the adult population (95% credible interval: 90.5% to 93.0%) would have tested positive for antibodies against coronavirus (COVID-19) - SARS-CoV-2 - on a blood test in the week beginning 28 June 2021, suggesting they had the infection in the past or have been vaccinated (Steal et al., 2021).

Even in countries where vaccination has become widespread, re-infection has occurred. The final decision on which policy was the best will be made by people 10 to 50 years from now. However, after more than a year of the COVID-19 crisis, the results are slowly beginning to emerge, with some countries
showing no signs of stopping infection and others showing signs of convergence. In this paper, the transition patterns of the number of people infected was classified and infer the factors that caused these pattern differences in relation to human movement data among other factors.

Data and procedures

From WHO’s open data from Jan 2020 to July 2021, a comparison among the number of people infected and deaths for 12 countries with consideration to the balance between Asia, Europe, and the United States was conducted. Since the parameters of PCR tests varies from country to country, the study focused on the change in the number of deaths rather than the number of people infected, drew an approximate curve with an R2 value of 0.3 or higher, and determined whether the trend was upward or downward. To determine the approximation curve, a linear approximation was initially utilized, then increased to the second and third degree and selected the lowest degree possible. However, if an approximation curve with an R2 value of 0.3 or higher could not be found even after raising the order to the sixth degree, the country was classified as one that is currently difficult to judge.

Classification

Based on the approximate curve of the number of deaths and the overall trend of new and cumulative people infected /dead, the countries were classified into four categories: *countries that have converged but are headed for a resurgence* (UK and Israel) *countries with a converging trend* (Germany, Italy, Spain, France, and the USA; *countries with a trend of infection* (Japan, Russia, Indonesia, India, and Brazil; and, *countries that are currently uncategorized* (China and Korea).

\[
 y = 1E-08x^4 - 0.0019x^3 + 128.08x^2 - 4E+06x + 4E+10 \\
 R^2 = 0.4226
\]
Classification 1: Countries that have converged but are headed for resurgence

Figure 2
United Kingdom

Figure 3
Israel

Classification 2: Countries with a converging trend

Figure 4
Germany

Figure 5
Italy

Figure 6
Spain

Figure 7
France
Classification 3: Countries with a trend of infection

Figure 8
United States of America

Figure 9
Japan

Figure 10
Russia

Figure 11
Indonesia

Figure 12
India
Analysis of Data

Data and procedures

The relationship between movement data and three of the four categories was examined: countries that have converged but are headed for a resurgence, countries with a trend of infection, and countries with a converging trend. Apple's open data on human movement and WHO's data on the number of infected people,
deaths, and vaccinations are integrated by date and used in the analysis. The data is based on the movement of iPhone users, where “Driving” is for car movement, “Transit” is for public transportation, and “Walking” is for movement by foot. Furthermore, “people vaccinated” is the number of people who have been vaccinated at least once, and “people_fully_vaccinated” is the number of people who are fully vaccinated (i.e., have received two doses of the required vaccine).

Association with Movement Data

For the UK, which has converged but is headed for resurgence, we correlated movement data with data on the number of infected people, etc. As of July 2021, 49% of people in the UK had received two doses of vaccine, and 66% had received at least one dose. As shown in the previous section, as vaccination progressed, the number of infections and deaths in the UK continued to decline for six months after January 2021, but the infection began to spread after mid-to-late June. Looking at the correlation with movement data, there was a high positive correlation between movement data and vaccination, and a negative correlation with new deaths and positive rates [Table1, Table2].

The chart of UK [Figure 16] deaths and movement data shows that deaths tended to increase after movement increased until January 2021 and decrease when movement decreased. However, from February 2021 until now, there has been no increase in the number of deaths even as human movement has increased. Although the number of infected people is beginning to increase again, the reason why the number of deaths has not increased may be due to the vaccine preventing serious illness.
Table 1
UK, Correlation coefficient

<table>
<thead>
<tr>
<th></th>
<th>driving</th>
<th>transit</th>
<th>walking</th>
<th>new_cases</th>
<th>new_deaths</th>
<th>positive_rate</th>
<th>people_vaccinated</th>
<th>people_fully_vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transit</td>
<td>.858**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walking</td>
<td>.916**</td>
<td>.923**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_cases</td>
<td>-.100*</td>
<td>-.07</td>
<td>-.055</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_deaths</td>
<td>-.587**</td>
<td>-.465**</td>
<td>-.486**</td>
<td>-.569**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive_rate</td>
<td>-.456**</td>
<td>-.337**</td>
<td>-.361**</td>
<td>-.391**</td>
<td>-.639**</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>people_vaccinated</td>
<td>.837**</td>
<td>.852**</td>
<td>.775**</td>
<td>-.683**</td>
<td>-.797**</td>
<td>-.806**</td>
<td>1.00</td>
<td>.853**</td>
</tr>
<tr>
<td>people_fully_vaccinated</td>
<td>.916**</td>
<td>.972**</td>
<td>.876**</td>
<td>-.265**</td>
<td>-.543**</td>
<td>-.417**</td>
<td>.853**</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Correlation coefficient significant at the 1% level (double-sided)

Table 2
UK, Mean and standard deviation

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving</td>
<td>93.16</td>
<td>28.66</td>
<td>536</td>
</tr>
<tr>
<td>transit</td>
<td>65.00</td>
<td>30.71</td>
<td>536</td>
</tr>
<tr>
<td>walking</td>
<td>93.81</td>
<td>32.89</td>
<td>536</td>
</tr>
<tr>
<td>new_cases</td>
<td>9443.70</td>
<td>12732.25</td>
<td>521</td>
</tr>
<tr>
<td>new_deaths</td>
<td>264.37</td>
<td>358.55</td>
<td>486</td>
</tr>
<tr>
<td>positive_rate</td>
<td>0.04</td>
<td>0.05</td>
<td>450</td>
</tr>
<tr>
<td>people_vaccinated</td>
<td>27106819.28</td>
<td>12892293.29</td>
<td>178</td>
</tr>
<tr>
<td>people_fully_vaccinated</td>
<td>11361915.07</td>
<td>11661911.08</td>
<td>174</td>
</tr>
</tbody>
</table>

Figure 16
UK, Number of deaths and movement

![Chart showing number of deaths and movement over time]
Germany is one of the countries with a converging trend. As of July 2021, 38% of people in Germany had completed two doses of vaccine, and 60% had taken at least one dose. Looking at the correlation with movement data, there was a high positive correlation between movement data and vaccination, and a negative correlation with new deaths and positive rates. Similar to the UK, there was a trend of increased deaths after increased movement until January 2021, with a trend of decreased deaths once movement decreased. However, between February 2021 until now, no increase in deaths has occurred even when human movement increases. Other countries with converging trends besides Germany showed the exact same trend. In other words, the lifting of restrictions since February 2021 has not led to an increase in the number of deaths [Table3, Table4, Figure 17].

Table 3
Germany, Correlation coefficient

<table>
<thead>
<tr>
<th></th>
<th>driving</th>
<th>transit</th>
<th>walking</th>
<th>new_cases</th>
<th>new_deaths</th>
<th>positive_rate</th>
<th>people_vaccinated</th>
<th>people_fully_vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transit</td>
<td>864**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walking</td>
<td>942**</td>
<td>.890**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_cases</td>
<td>-.384**</td>
<td>-.208**</td>
<td>-.353**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_deaths</td>
<td>-.542**</td>
<td>.407**</td>
<td>-.525**</td>
<td>.614**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive_rate</td>
<td>-.687**</td>
<td>-.419**</td>
<td>-.627**</td>
<td>.649**</td>
<td>.701**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>people_vaccinated</td>
<td>909**</td>
<td>.898**</td>
<td>.862**</td>
<td>-.418**</td>
<td>-.575**</td>
<td>-.616**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>people_fully_vaccinated</td>
<td>926**</td>
<td>.247**</td>
<td>.398**</td>
<td>-.482**</td>
<td>-.525**</td>
<td>-.714**</td>
<td>.337**</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4
Germany, Mean and standard deviation

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving</td>
<td>104.12</td>
<td>29.40</td>
<td>536</td>
</tr>
<tr>
<td>transit</td>
<td>101.35</td>
<td>32.49</td>
<td>536</td>
</tr>
<tr>
<td>walking</td>
<td>104.72</td>
<td>30.92</td>
<td>536</td>
</tr>
<tr>
<td>new_cases</td>
<td>7120.90</td>
<td>8975.63</td>
<td>525</td>
</tr>
<tr>
<td>new_deaths</td>
<td>188.49</td>
<td>261.45</td>
<td>483</td>
</tr>
<tr>
<td>positive_rate</td>
<td>0.06</td>
<td>0.04</td>
<td>68</td>
</tr>
<tr>
<td>people_vaccinated</td>
<td>16180047.01</td>
<td>15230519.87</td>
<td>187</td>
</tr>
<tr>
<td>people_fully_vaccinated</td>
<td>8.66</td>
<td>10.02</td>
<td>187</td>
</tr>
</tbody>
</table>
For Japan, which shows seasonal variation but no convergence, the correlation between movement data and data such as the number of infected people was also examined. As of July 2021, 12.65% of people in Japan had completed two doses of vaccine and 35% had taken at least one dose.

Table 5
Japan, Correlation coefficient

<table>
<thead>
<tr>
<th></th>
<th>driving</th>
<th>transit</th>
<th>walking</th>
<th>new_cases</th>
<th>new_deaths</th>
<th>positive_rate</th>
<th>people_vaccinated</th>
<th>people_fully_vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transit</td>
<td>.878**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walking</td>
<td>.848**</td>
<td>.767**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_cases</td>
<td>.124**</td>
<td>-.151**</td>
<td>.055</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_deaths</td>
<td>-.037</td>
<td>-.326**</td>
<td>-.056</td>
<td>.687**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive_rate</td>
<td>-.191**</td>
<td>-.224**</td>
<td>-.056</td>
<td>.204**</td>
<td>0.026</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>people_vaccinated</td>
<td>-.071</td>
<td>-.314**</td>
<td>-.298**</td>
<td>-.283**</td>
<td>-.029</td>
<td>-.361**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>people_fully_vaccinated</td>
<td>-.115**</td>
<td>-.313**</td>
<td>-.329**</td>
<td>-.434**</td>
<td>-.093</td>
<td>-.512**</td>
<td>.977**</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6
Japan, Mean and standard deviation

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving</td>
<td>118.60</td>
<td>25.14</td>
<td>536</td>
</tr>
<tr>
<td>transit</td>
<td>106.53</td>
<td>23.60</td>
<td>536</td>
</tr>
<tr>
<td>walking</td>
<td>104.13</td>
<td>24.66</td>
<td>536</td>
</tr>
<tr>
<td>new_cases</td>
<td>1525.86</td>
<td>1754.41</td>
<td>529</td>
</tr>
<tr>
<td>new_deaths</td>
<td>29.12</td>
<td>33.98</td>
<td>508</td>
</tr>
<tr>
<td>positive_rate</td>
<td>0.05</td>
<td>0.03</td>
<td>506</td>
</tr>
<tr>
<td>people_vaccinated</td>
<td>7778712.51</td>
<td>9321795.45</td>
<td>118</td>
</tr>
<tr>
<td>people_fully_vaccinated</td>
<td>3500027.96</td>
<td>4280531.84</td>
<td>104</td>
</tr>
</tbody>
</table>
Looking at the chart of deaths and movement data, Japan, like the UK and Germany, shows an increase in deaths after increased movement, and a decrease in deaths once movement decreases. The difference between Japan and the converging countries is that the cycle repeats itself even after January 2021, with deaths increasing as human movement increases [Table 3, Table 4, Figure 17].

PCR Tests and Vaccines

Countries that have not experienced an increase in deaths since February 2021, including countries with resurgence, may have a high number of PCR tests and a high vaccination rate. In the UK and Israel, vaccination started in December 2020, and in the UK, 0.5% of the population (1 in 200) had received two doses of vaccine as of January 10, 2021. In July 2021, 7 months have passed since vaccination with the effects possibly having decreased. Vaccines have two effects: prevention of infection and of serious illness. Although the effect of preventing infection
has been decreasing, there has been no significant increase in the number of deaths, possibly due to serious illness being prevented.

As with vaccination, the prevalence of PCR testing also varied among countries. In countries such as the U.K., Israel, and the U.S., PCR testing was available free of charge with as many times as needed, but in some countries such as Japan, public free PCR testing was not widespread, and testing did not become popular due to the high cost of taking it at one's own expense.

Table 7 shows the vaccination rate and the number of PCR tests per 1000 people. There was a correlation between the vaccination rate and the number of PCR tests (R=0.68), one between the number of deaths per million people and the vaccination rate (R=0.52), and another between the number of deaths per million people and the number of PCR tests (R=0.73). The table shows that more than 50% of the population has been vaccinated in both countries that have converged but are headed for resurgence and countries with converging trends, and more than 1,000 times per 1,000 people, or every citizen, has received more than one PCR test except for Germany. In the UK, there were 3374 PCR tests per 1000 people, or more than three per person.

On the other hand, the vaccination rate in countries with a surging trend is approaching 50%, with Brazil at 45% and other countries such as Japan and India having low progress in vaccination. Furthermore, Russia has reached the level of once per person for PCR testing, while Japan, Brazil, and Indonesia have not even reached the level of once per five people. Assuming that people infected receive multiple PCR tests before they are cured, it means that the majority of people, other than those with symptoms, did not receive the test.
Table 7
The vaccination rate and the number of PCR tests (per 1000 people), Total death (per million people)

<table>
<thead>
<tr>
<th>location</th>
<th>Vaccinated(%)</th>
<th>PCR_Testing</th>
<th>Total_deaths_per_million</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>68</td>
<td>3374</td>
<td>494136</td>
</tr>
<tr>
<td>Israel</td>
<td>66</td>
<td>2121</td>
<td>162407</td>
</tr>
<tr>
<td>Spain</td>
<td>64</td>
<td>1027</td>
<td>469774</td>
</tr>
<tr>
<td>Italy</td>
<td>61</td>
<td>1238</td>
<td>505676</td>
</tr>
<tr>
<td>Germany</td>
<td>60</td>
<td>785</td>
<td>198204</td>
</tr>
<tr>
<td>France</td>
<td>58</td>
<td>1462</td>
<td>395255</td>
</tr>
<tr>
<td>United States</td>
<td>56</td>
<td>1445</td>
<td>438777</td>
</tr>
<tr>
<td>Brazil</td>
<td>45</td>
<td>149</td>
<td>425330</td>
</tr>
<tr>
<td>Japan</td>
<td>35</td>
<td>132</td>
<td>16530</td>
</tr>
<tr>
<td>India</td>
<td>24</td>
<td>323</td>
<td>41966</td>
</tr>
<tr>
<td>Russia</td>
<td>23</td>
<td>1096</td>
<td>156997</td>
</tr>
<tr>
<td>Indonesia</td>
<td>16</td>
<td>58</td>
<td>35561</td>
</tr>
</tbody>
</table>

To visualize, figure 19 shows a scatter plot was created with Group 1 representing countries with a converging trend including resurgence and Group 2 representing countries with a surging trend. The scatter plot shows that countries in Group 1 have frequent PCR tests and a high vaccination rate, while countries in Group 2 have fewer PCR tests and a low vaccination rate.

Figure 19
The vaccination and the number of PCR tests
Conclusion

From the trends of people infected, the systematized data into four categories was according to the trend of convergence and surges. Analysis of movement data (car/public transport/walking) and COVID-19 deaths showed that all countries repeated the cycle of increasing deaths as human movement increased until January 2021. The UK and Israel, where the number of infected people has re-emerged, were included in the converging countries because they did not experience a significant increase in the number of deaths, and the differences between converging and surging countries were examined. We found that the difference between converging and non-converging countries is whether or not the cycle repeats itself after February 2021. Converging countries did not experience a significant increase in deaths after February 2021, even though human movement increased. Surging countries continued the cycle of increased deaths with increased movement. It was inferred that vaccination and PCR testing contributed significantly to this.

Coronaviruses mutate repeatedly in a short period of time. Even in the UK and Israel, where vaccination progressed at an early stage, the spread of vaccination alone was insufficient as a countermeasure since the increased movement of people without masks resulted in the reemergence of infected people due to the effects of the highly infectious Delta variant. While high numbers of infected people were observed around 2020 in France, Italy, Germany, and other countries, thorough PCR testing and vaccination have prevented a significant increase in the number of people infected and deaths since February 2021.

Based on these facts, it was assumed that the COVID-19 crisis will be brought under control even if human movement increases by continuing to wear masks and maintain social distance as before on top of thorough PCR testing and vaccination.
References

