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Abstract  

Accurate and timely crop disease detection is critical for reducing agricultural losses and ensuring food security 

in low-resource settings. Traditional diagnostic methods, such as manual inspections, are often inefficient and 

error-prone. Existing deep learning models (e.g., ResNet50, Inception V3) struggle with computational 

inefficiency and poor generalizability in real-world farming contexts. This study proposes a lightweight 

multimodal fusion model integrating EfficientNetV2 and MobileNetV2, optimized for edge deployment. The 

architecture leverages compound scaling and feature fusion to recognize subtle disease patterns, and it was 

fine-tuned on a globally diverse dataset (PlantVillage and field-collected leaf images). The proposed model 

achieved state-leading metrics (99.0% accuracy, 0.993 precision, 0.990 F1-score, AUC = 0.999997), 

outperforming benchmarks like ShuffleNet and DenseNet50 (ranked 2nd–6th). Statistical validation via the 

Kruskal-Wallis test confirmed significant performance differences across models (H=614.90, 

p=1.4237e−129), with Bayesian analysis showing a 100% superiority probability over DenseNet50. Notably, 

the model exhibited the lowest confidence variance (0.000012) compared to alternatives (0.000014–0.000032), 

demonstrating unmatched prediction stability. Deployment on low-end mobile devices posed challenges such 

as computational constraints and offline usability. However, the TensorFlow Lite-powered mobile app 

addressed these limitations, offering real-time, offline disease classification with 0.094-second inference 

latency on devices with ≤2GB RAM. Validated on 249 unseen field images (95.98% accuracy), this solution 

bridges the gap between high-performance deep learning and real-world agricultural needs, empowering 

smallholder farmers with an accessible and scalable tool. 
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1. Introduction 

Recent technological advancements have enhanced disease detection through machine 

learning (ML), computer vision, and deep learning (DL) innovations, transforming the domain 

and making disease identification precise and effective. Kaleem et al. (2021) demonstrated that 

these modern techniques use sophisticated algorithms to analyze plant leaf photographs, 

enabling more accurate detection of disease patterns. Given the challenges of distinguishing 

between similar plant diseases, integrating image processing with ML and computer vision is 

crucial for achieving reliable diagnoses. DL has made remarkable strides in image 

classification, achieving notable accuracy and speed in detecting and classifying crop leaf 

diseases. Despite its advancements, Abdu et al. (2020) illustrated that DL methods face 

challenges, like the need for extensive training data. Transfer learning (TL) has been 

demonstrated to be a powerful answer to these limitations, enhancing learning efficiency by 

leveraging knowledge from pre-trained models. TL also helps reduce overfitting, improve 

interpretability, and lower computational costs, which is essential for practical model training 

and performance. Mohammed and Yusoff (2023) also concur that TL models are lightweight 

and compatible with low-end graphics processing units (GPUs), which leads to shorter training 

times and lower computational costs. Moreover, TL reduces the likelihood of models making 

incorrect assumptions about new and unfamiliar data, enabling deep learning models to 

perform more efficiently. Zhao et al. (2024) explain that collecting and organizing large image 

databases for training machine learning models comes with significant costs, both in time and 

finances. Static methods, which rely on fixed datasets and algorithms, often struggle with 

adaptability and can lead to decreased performance when faced with new or varied data.  

As Nguyen et al. (2023) also observe, these static approaches may become outdated as 

conditions change or as new types of plant diseases emerge. There is a growing need for 

dynamic detection methods that adapt to evolving data and situations to address these issues. 

Data regularization and augmentation are integral to these dynamic approaches, improving 

model generalization and accuracy. These methods offer a more flexible and robust solution 

than static methods by incorporating descriptive features from diverse sources and dynamically 

updating models. Sarker (2021) demonstrates that this transition to dynamic detection 

approaches is crucial for effectively handling the complexities and variabilities of real-world 

data. Hence, this study addressed the challenges of crop disease detection by utilizing advanced 

image classification techniques, leveraging the globally recognized PlantVillage dataset and 
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locally sourced crop images, and the need for models to capture both low-range and long-range 

dependencies in agricultural data. Existing models struggle with generalization and overfitting, 

particularly when trained on small or imbalanced datasets, and often fail to balance accuracy 

with computational efficiency. The main contributions of this study are as follows: 

We propose a hybrid architecture that integrates MobileNetV2 and EfficientNetV2 to 

effectively capture both low-range and long-range dependencies in the data. 

We implement feature fusion via concatenation, combining extracted features from 

both CNN models to form a comprehensive representation, leveraging fine-grained details 

from both networks. 

We incorporate dropout and batch normalization to enhance model generalization, 

prevent overfitting, and ensure stable feature learning during training. 

 

2. Literature Review 

2.1 Plant Disease Detection  

Effective plant disease identification is vital for precision agriculture, impacting plant 

health and productivity. With increasing disease outbreaks, timely detection is crucial for 

diagnosis, control, and damage assessment. Early identification allows targeted treatments and 

prevents significant economic losses. Abdu et al. (2020) describe key metrics that include 

disease incidence (proportion of affected plants), severity (extent of damage), and consequence 

(impact on yield). Computer vision has enhanced plant disease detection beyond traditional 

human methods, which are labour-intensive and subjective (Kemi et al., 2022). Automated 

systems use machine learning to analyze plant images, recognizing patterns and features like 

texture, color, and shape. According to Zheng et al. (2019), classifiers detect diseases by 

comparing extracted features with categorized datasets. DL models like CNNs offer improved 

accuracy by processing large datasets and identifying subtle patterns. These advancements 

facilitate more effective disease segmentations on images, crucial for precise diagnosis and 

treatment. Color analysis is pivotal in plant disease detection, especially when identifying 

discoloration caused by various diseases. Color is often one of the earliest visible symptoms, 

and analyzing color variations can provide critical information about the plant's health. Sala et 

al. (2020) identify that the common color spaces like Hue-Saturation-Value (HSV), CIELAB 

(LAB), and RGB are frequently used to detect these changes, with HSV and LAB being 

particularly robust against variations in lighting conditions. RGB is an additive color model 
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where colors are created by combining different intensities of red, green, and blue light (Abbasi 

et al., 2023). Each component can range from 0 to 255, with (255, 255, 255) producing white 

and (0, 0, 0) resulting in black. LAB, which separates lightness from color-opponent 

dimensions, further refines this analysis, helping to differentiate healthy from diseased tissues 

under various conditions. Texture-based disease detection is highly effective for diagnosing 

plant diseases by quantifying surface characteristics and identifying subtle changes that may 

not be readily visible through color or shape alone. 

 

2.2 Multimodal Fusion Models  

Multimodal fusion, as demonstrated by Liu et al. (2024), involves integrating different 

types of data or features from multiple sources. This is crucial for improving the reliability and 

precision of disease detection. Advanced frameworks for detecting plant leaf diseases have 

achieved considerable success in early diagnosis. Researchers are developing and refining 

various fusion methods for automated disease classification, including feature fusion and deep 

learning. Feature fusion is a machine learning and computer vision technique that enhances 

classification tasks by combining features from different sources or models. Mi et al. (2020) 

introduced C-DenseNet, an enhancement of DenseNet architecture. C-DenseNet't incorporates 

the block attention module into DenseNet, which uses attention mechanisms to refine feature 

extraction by focusing on essential regions and channels. This fusion enhances DenseNet's 

ability to capture and emphasize critical features relevant to crop disease detection, as shown 

in the works of  Sladojevic et al. (2016). C-DenseNet can potentially identify subtle disease 

symptoms more effectively by focusing on key features in plant images. 

Dong et al. (2020) incorporated a coordinate attention mechanism into MobileNet to 

boost the Model performance while reducing its parameter count. MobileNetV2, known for its 

efficient depthwise separable convolutions, was further improved with coordinate attention, 

which allowed the Model to focus on spatially significant regions. This combination helped 

MobileNetV2 to better capture disease-related features in plant images. Mousavi and Farahani 

(2022) proposed an improved VGG16 grape disease detection model incorporating transfer 

learning. The VGG16 architecture, known for its deep convolutional layers, was optimized for 

mobile devices using transfer learning techniques. This fusion allowed the system to process 

images captured via mobile phones and provided real-time disease identification. 
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2.3 Features Extraction Process 

Feature extraction using two parallel models involves independently processing input 

data through each model to derive distinct feature representations. These extracted features are 

then fused, often through concatenation or weighted averaging, to leverage the unique 

strengths of each architecture, ultimately enhancing overall model performance. An image is 

represented as a tensor with dimensions.(𝑛ℎ, 𝑛𝑤 , 𝑛𝑐), where 𝑛𝑤 is the height, 𝑛𝑤 and 𝑛𝑐 

represents the number of channels. The feature extraction process relies on convolution 

operations, where a filter (or kernel) of size is used. (𝑓, 𝑓, 𝑛𝑐), slides across the image to 

capture patterns such as edges and textures. This process is mathematically expressed as: 

Conv(𝐼, 𝐾)(𝑥,𝑦) = ∑  
𝑓
𝑖=1 ∑  

𝑓
𝑗=1 ∑  

𝑛𝑐
𝑘=1 𝐾(𝑖,𝑗,𝑘) × 𝐼(𝑥+𝑖−1,𝑦+𝑗−1,𝑘) (1) 

 

To introduce non-linearity, a Rectified Linear Unit (ReLU) activation function is 

applied element-wise to the feature maps, ensuring that negative values are set to zero while 

retaining positive values. The dimensions of the activated feature maps remain, (𝑛ℎ
′ , 𝑛𝑤

′ , 𝑛𝑓). 

Pooling operations, such as max pooling, are then applied to reduce the spatial dimensions 

while preserving key features. Given a pooling window of size 𝑝 × 𝑝, the pooled feature map 

at position (𝑥, 𝑦, 𝑐) is computed as:  

𝑃(𝑥,𝑦,𝑐) = 𝑚𝑎𝑥
𝑖=0

𝑝−1
 𝑝 − 1
𝑗=0

𝐴(𝑥⋅𝑝+𝑖,𝑦⋅𝑝+𝑗,𝑐)    (2) 

 

This process downsamples the feature maps, reducing computational complexity while 

retaining the most essential information. These steps are repeated across multiple 

convolutional and pooling layers, progressively refining and abstracting features. After several 

layers, the resulting pooled feature maps denoted as 𝑃𝐿, are flattened into a single feature 

vector 𝑉, with dimensions and are calculated as: 

𝑉 ∈ ℝ(𝑛ℎ
𝐿×𝑛𝑤

𝐿 ×𝑛𝑓
𝐿)

      (3) 

 

The flattened feature vector is then passed through fully connected (FC) layers, where 

each layer applies linear transformations followed by activation functions. The transformation 

at the 𝑖-th  layer is defined as: 

𝐹𝐶𝑖 = 𝜎(∑  𝑁
𝑗=1 𝑉𝑗 ⋅ 𝑊𝑖𝑗

𝐷 + 𝑏𝑖
𝐷)    (4) 
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Where,  𝑊𝐷 and 𝑏𝐷  represent the weights and biases of the dense layer. In 

classification tasks, a SoftMax function is typically applied to the output of the final FC layer 

to convert activations into class probabilities, as shown:  

�̂�𝑖 =
𝑒𝐹𝐶𝑖

∑  𝐾
𝑗=1 𝑒

𝐹𝐶𝑗
, for 𝑖 = 1,2, … , 𝐾     (5) 

 

Where 𝐾 is the number of output classes. The predicted class, �̂�pred  is determined by 

selecting the index 𝑖 corresponding to the highest probability, as shown: 

�̂�pred = arg𝑚𝑎𝑥
𝑖
 �̂�𝑖     (6) 

This approach enhances the model’s ability to capture diverse feature representations 

by leveraging parallel feature extraction pathways, improving classification accuracy and 

efficiency. 

 

3. Methodology 

The proposed architecture, as shown in figure 1, comprises two parallel branches: 

EfficientNetV2 and MobileNetV2, each designed to optimize input data through tailored 

preprocessing steps. The ReLU (Rectified Linear Unit) activation function is employed in the 

convolutional layers to introduce non-linearity, effectively addressing the vanishing gradient 

problem. ReLU activates only positive values while zeroing out negative ones, ensuring the 

Model captures critical non-linear features and achieves faster convergence. The architecture 

incorporates compound scaling, uniformly scaling network depth, width, and resolution to 

balance accuracy and computational efficiency. This approach ensures consistent performance 

across all layers, maintaining a stable trade-off between feature extraction quality and 

computational demands. The outputs from both branches are fed into dedicated fully connected 

layers (FC1) with dimensions specified by 𝑓𝑐_𝑑𝑖𝑚. These outputs are concatenated to form a 

combined feature set, allowing the Model to integrate unique feature representations from 

EfficientNetV2 and MobileNetV2. EfficientNetV2 captures complex patterns through its 

advanced scaling, while MobileNetV2 provides lightweight feature extraction, enhancing 

efficiency for edge environments. The concatenation preserves the full feature space from each 

branch, resulting in a comprehensive representation for downstream classification tasks. This 

concatenated output is processed through an additional set of fully connected layers (FC2) and 

a SoftMax layer for classification, producing the final output.  
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Figure 1 

Proposed model architecture 

 

 

After loading the dataset, pixel values underwent normalization to a range of [0,1]. This 

step was crucial for enhancing the Model convergence during training. The normalization of 

pixel values was mathematically expressed as follows:  

Normalized_pixel =
 pixel_value 

255.0
             (7) 

 

Next, a stratified sampling technique was employed to ensure that the distribution of 

classes within the training and validation datasets remained consistent with the original dataset. 

We calculated the number of samples designated for the training set based on stratified 

sampling as follows: 

Train_size = (
 number of samples in class 

 total samples 
) ×  total samples × (1 −  test_size )          (8) 

 

Train_size represented the number of samples allocated to the training set, while 

total samples denote the total number of images within the dataset. The variable test_size 

specifies the proportion of the dataset reserved for validation, with a value of 0.2 indicating an 

80–20 split between training and validation sets. To ensure the reproducibility of the data split 

across multiple runs, a random state of 42 was specified. The following algorithm in figure 2 

iterated through the dataset, extracting images and labels.  
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Figure 2 

Dataset preparation and stratified split algorithm 

 

Figure 3 

Model training and evaluation algorithm 
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For the dual-input model architecture, as shown in figure 3, the training dataset ensured 

that both models received the same preprocessed image as input. The dataset originated from 

a structured directory, each subdirectory representing a specific class label. Using categorical 

labeling, each image was assigned a one-hot encoded vector, providing a unique identifier for 

its class. Additionally, the large variability in crop disease images required the model to adapt 

effectively without overshooting optimal parameter values during training. Initially, we set the 

learning rate to 1×10−3, commonly used as a starting point for many models. However, this 

learning rate was too high for our model, leading to unstable training and causing the loss to 

fluctuate significantly, which hindered proper convergence. The larger learning rate resulted 

in "overshooting," where the model failed to settle into the local minima of the loss function, 

making it difficult to achieve optimal training results. To address these issues, we opted for a 

lower learning rate of 1 × 10−5. Furthermore, the reduced learning rate provided better 

stability during training, preventing the Model from oscillating around the optimal values.  

In the one-hot encoding, each class label was represented as a binary vector where only 

the entry corresponding to the target class was set to 1, and all others were set to 0. 

Mathematically, for a label y belonging to one of the C classes, the one-hot encoding was 

calculated as: 

onehot (𝑦) = {
1     if class = 𝑦
0     otherwise 

   (9) 

 

If the dataset contained N samples, the label matrix after one-hot encoding, Y, will have 

the shape N×C. The dataset creation process involved pairing each image with its 

corresponding label using from_tensor_slices, allowing seamless mapping between the input data 

and labels. Each image-label pair was then processed through a series of transformations, 

including resizing to the specified input dimensions, normalizing pixel values, and ensuring 

compatibility for dual input model architectures. To leverage both MobileNetV2 and 

EfficientNetV2, two input layers were created for dual input processing. Each input layer 

accepted images with dimensions 224×224×3. Mathematically, if an input image is represented 

as a 3D tensor I, its dimensions are defined as follows: 

𝐼 = [224,224,3]      (10) 

 



10 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2 

The first two dimensions (224, 224) represent the height and width of the image, and 

the third dimension (3) corresponds to the RGB color channels. This setup allowed each model 

to process the input image independently before combining their outputs for further fusion and 

analysis. Both models, MobileNetV2 and EfficientNetV2, were pre-trained on the ImageNet 

dataset and removed their top (classification) layer. The feature maps produced by each model 

were denoted as  𝐹1 and 𝐹2 respectively as shown: 

𝐹1 = MobileNetV2(𝐼1), 𝐹2 = EfficientNetV2B0(𝐼2) (11) 

 

Global average pooling (GAP) was then applied to the feature maps 𝐹1 and 𝐹2.GAP 

reduced each feature map to a single value by averaging each channel's spatial dimensions 

(height and width). For instance, if 𝐹1have dimensions ℎ × 𝑤 × 𝑑,  GAP produced an output 

of dimension d, which was calculated as follows: 

GAP(𝐹1) =
1

ℎ×𝑤
∑  ℎ
𝑖=1 ∑  𝑤

𝑗=1 𝐹1(𝑖, 𝑗, 𝑘)    (12) 

 

Where k is the index of each channel. This pooling operation compressed spatial 

information, retaining only the most essential features from each channel, facilitating a more 

compact representation of the input data while preserving key characteristics. The resulting 

pooled output features of both models, x1 and x2, were then concatenated to create a combined 

feature vector x which was defined as: 

𝑥 = concat(𝑥1, 𝑥2)           (13) 

 

Initially, activation functions like sigmoid and tanh were experimented with during 

model training. However, these posed significant challenges. Both functions suffered from the 

vanishing gradient problem, where gradients became very small during backpropagation. This 

slowed down the training process and hindered convergence, particularly in the deeper layers 

of the network. We ultimately opted for the ReLU (Rectified Linear Unit) activation function 

to address these challenges. This combined vector was then passed through a dense layer with 

ReLU activation, which performed an affine transformation followed by a non-linear 

activation and was calculated as: 

𝑥 = ReLU(𝑊𝑥 + 𝑏)       (14) 



ISSN 2799-1601 (Print) 2799-161X (Online) | 11 

                                                                                        

   

   

Where W and b are the weights and biases of the dense layer. By normalizing the output 

of each layer using the mean and variance calculated across the mini-batch, batch 

normalization helps stabilize the learning process, accelerates convergence, and mitigates 

issues related to internal covariate shifts. Given an input z, we computed batch normalization 

as shown: 

𝑧norm =
𝑧−𝜇

√𝜎2+𝜖
       (15) 

 

Where, 𝜇 and 𝜎2 are the batch mean and variance, and ϵ is a small constant. Dropout 

was then randomly set as a fraction p of input units to zero, helping to prevent overfitting, and 

was defined as: 

Dropout(𝑥) = 𝑥 ⋅  mask      (16) 

 

The mask is a binary vector with elements set to 0 with probability p=0.3. We used a 

dense layer with a softmax activation in the final output layer. By selecting the class with the 

highest probability, we could make more confident and accurate predictions, with the softmax 

activation ensuring that the sum of all predicted probabilities equalled 1, providing a clear and 

interpretable decision and was calculated as follows:  

softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑  𝐶
𝑗=1 𝑒

𝑧𝑗
     (17) 

 

Zi is the 𝑖-th logit (raw model output), and C is the number of classes. The model was 

then compiled using the Adam optimizer, which adjusted weights based on the gradient's first 

and second moments. This allowed the optimizer to adapt the learning rate dynamically during 

training, ensuring more efficient convergence. The update rule for each weight w at time step 

t was calculated as follows: 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
�̂�𝑡

√𝑣�̂�+𝜖
       (18) 

 

where α is the learning rate, �̂�𝑡 and 𝑣𝑡 are the bias-corrected first and second-moment 

estimates of the gradient, and ϵ is a small constant to prevent division by zero. The loss function 

used was categorical cross-entropy with label smoothing. For each class, the smoothed label 

𝑦smooth  was calculated as follows: 
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𝑦smooth = 𝑦 × (1 − 𝛼) +
𝛼

𝐶
      (19) 

 

where y was the original label, α is the smoothing factor, and N is the number of classes. 

The loss L was then calculated by incorporating label smoothing to adjust the error calculation 

during training, leading to more stable and effective learning, and was calculated as follows: 

𝐿 = −∑  𝐶
𝑖=1 𝑦smooth,𝑖log(𝑝𝑖)      (20) 

 

where pi is the predicted probability for class i. This approach reduced overconfidence 

in predictions, making training more stable. Callback mechanisms—specifically model 

checkpoint, earlyStopping, and ReduceLROnPlateau—were configured to reduce 

overconfidence. These model checkpoints monitored the validation loss and saved the model 

whenever an epoch achieved a new minimum validation loss, and was defined as:  

Save Model: {
 Save if val _lossnew <  val _loss best 

 Update val _loss best =  val _loss new 
            (21) 

 

EarlyStopping monitored the validation loss and halted training when no improvement 

was observed for a specified number of epochs, helping to prevent overfitting, which was 

calculated as. 

Stop Training: {
 if val_loss >  val_ loss𝑡−1 for 𝑝 epochs 

 Restore Best Weights 
   (22) 

 

Reduce Learning Rate on Plateau was used when the validation loss remained 

unchanged for three consecutive epochs. The learning rate was halved. This adjustment 

encouraged the Model to converge more precisely by allowing for finer weight updates, 

facilitating better optimization in the later stages of training, and was calculated as follows: 

Update Learning Rate: {
 if val _loss𝑡 ≥  val _loss 𝑡−1
 then 𝜂𝑡 = 𝜂𝑡−1 ⋅ 𝑓, where 𝑓 < 1

  (23) 

 

The model was trained over 24 epochs. Where, 𝐿train  and 𝐿𝑣𝑎𝑙 represented training and 

validation losses, respectively, and 𝐴train  and 𝐴Val  represented training and validation 

accuracy. Performance was evaluated per epoch to track improvements and avoid overfitting 

by observing the trends and was defined as: 
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𝐿train , 𝐿Val , 𝐴train, and 𝐴Val     (24) 

 

The final model was evaluated on the validation dataset using accuracy, precision, 

recall, and F1-score metrics. To align the true labels, we represented them as: 

𝑌true = ∑  𝑁
𝑖=1 𝑌1

𝑖       (25) 

 

N was the number of batches in the validation dataset, and Y1 represented the one-hot 

encoded labels. Predictions were generated on the validation dataset to further analyze the 

model's accuracy. The model output probabilities for each class were converted to class 

predictions using the argmax function. This yielded the predicted class. 𝑦pred_class  for each 

sample and was computed as follows: 

𝑦pred_class = argmax(𝑦pred , axis = 1)  (26) 

 

True labels, 𝑦true were similarly obtained by converting one-hot encoded labels from 

the validation dataset to class indices and were calculated as shown:  

𝑦true = argmax(𝑦labels , axis = 1)    (27) 

 

This process allowed for a direct comparison between the predicted and true class 

labels, facilitating the evaluation of the Model performance. With both 𝑦pred_class  and 

𝑦true aligned, it became possible to calculate additional metrics. 

 

4. Results and Discussions 

4.1 Dataset Description 

The study combined the Kaggle dataset (Saleem et al., 2020) and the FieldPlant datasets 

to create a comprehensive resource named the DEMF dataset. The Kaggle dataset, with 38 

distinct classes and 60,343 images, provided a globally diverse and well-structured resource 

ideal for training and validating the models. The FieldPlant dataset, developed in this study, 

contributed 25,775 annotated images of plant leaves, primarily collected from farms in central 

Kenya. Data augmentation techniques were applied to classes with fewer images to address 

imbalances and strengthen underrepresented classes. Augmented images were physically 

generated and stored in their respective directories, increasing the dataset's diversity and 
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ensuring a more balanced representation across all classes. The final dataset, as shown in table 

1, comprised 22 crop types, 76 individual classes, and 99,551 images, divided into 79,601 

training images and 19,950 validation images. 

 

Table 1 

 Dataset distribution 

Crop Type Total Images Training Images Validation Images 

Apple 4,651 3,719 932 

Banana 4,008 3,204 804 

Beans 8,096 6,475 1,621 

Blueberry 1,502 1,201 301 

Cassava 4,894 3,914 980 

Cherry 2,054 1,642 412 

Corn 4,358 3,484 874 

Grape 4,641 3,711 930 

Maize 1,002 801 201 

Maize-leaf 1,239 991 248 

Maize 4,985 3,986 999 

Orange 5,507 4,405 1,102 

Peach 3,299 2,638 661 

Pepper 2,480 1,983 497 

Potatoes 3,006 2,403 603 

Raspberry 1,002 801 201 

Rice 5,010 4,005 1,005 

Squash 1,835 1,468 367 

Strawberry 2,111 1,688 423 

Sugarcane 5,010 4,005 1,005 

Sunflower 4,008 3,204 804 

Tea 6,012 4,806 1,206 

Tomatoes 18,841 15,067 3,774 

Total 99,551 79,601 19,950 

 

4.2 Experimental Parameters and Environment 

 Table 2 outlines the experimental setup, where data was stored and accessed via Google 

Drive. The dataset was organized for efficient preprocessing and stratified splitting into 

training and validation sets. The images were resized to a fixed dimension of 224×224, 
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normalized, and prepared for dual inputs required by the MobileNetV2 and EfficientNetV2 

branches. Data augmentation and batching were performed to enhance model robustness, with 

a batch size 16 ensuring manageable computational loads. Key parameters, such as categorical 

labels and class names, were extracted and processed to ensure compatibility with the 

classification pipeline. The Model architecture combined outputs from MobileNetV2 and 

EfficientNetV2 through concatenation, followed by dense layers with ReLU activation, batch 

normalization, and dropout for regularization. The model was compiled with the Adam 

optimizer and a learning rate of 1×10−5, using categorical cross-entropy loss and label 

smoothing to improve classification performance. Multiple callbacks were integrated for 

checkpointing, early stopping, and adaptive learning rate reduction, optimizing the training 

process. The pipeline concluded with evaluation metrics such as validation accuracy, 

classification reports, confusion matrices, and ROC-AUC curves to assess model performance 

comprehensively. The experiments were conducted on an NVIDIA RTX 3090 GPU, providing 

reliable and efficient performance. The setup included a virtualized Intel Xeon CPU with 

access to virtualized GPUs (NVIDIA T4, Tesla P100, K80) and an operating system based on 

Linux (Ubuntu). Python was the primary language, supported by frameworks such as 

TensorFlow, PyTorch, Keras, and OpenCV. 

 

Table 2   

Hyperparameter Configurations 

Hyperparameter Value 

Image size 224 × 224 

Image channels 3 

Batch size 16 

Number of MobileNetV2 layers Feature extraction only 

Number of EfficientNetV2B0 layers Feature extraction only 

Hidden dimension 256 

Dropout rate 0.3 

Number of epochs 17 

Learning rate 1e-5 

Optimizer Adam 

Loss function Categorical Cross entropy (label smoothing = 0.1) 

Callbacks EarlyStopping, ModelCheckpoint, ReduceLROnPlateau 
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4.3 Evaluation Approach 

A comprehensive set of metrics was chosen to evaluate the proposed model and assess 

its predictive accuracy. Accuracy measured the correctly classified instances (positive and 

negative) from the dataset. This metric reflected the model overall effectiveness across all 

disease categories and was computed as follows: 

Accuracy =
TP+TN

TP+FP+TN+FN
               (28) 

 

TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. Precision is essential for reducing false positives, a critical factor in 

real-time crop disease detection, and was as calculated as: 

Precision =
TP

TP+FP
      (29) 

 

Recall, also known as sensitivity, measures the proportion of positives the model 

successfully identifies. This metric is crucial in disease detection as it minimizes false 

negatives, ensuring that diseased plants are not overlooked. and was calculated as follows: 

Recall =
TP

TP+FN
      (30) 

 

F1-score combines precision and recall into a single metric, using the harmonic mean 

to balance both. The F1 score is especially valuable when false positives and negatives carry 

significant implications and was calculated as follows: 

F1-score = 2 ×
 Precision × Recall 

 Precision + Recall 
    (31) 

 

The ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) measures 

the Model effectiveness in distinguishing between classes by examining the relationship 

between true positive and false positive rates. AUC values closer to 1.0 indicate stronger 

discriminatory power, critical in distinguishing subtle differences between healthy and 

diseased samples. The AUC is typically calculated from the area under the ROC curve.  
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4.4 Classification Results of the Proposed Model 

The Model training and validation results, as shown in table 3, demonstrate a consistent 

improvement in performance across 17 epochs. Training accuracy increased significantly from 

61.31% in Epoch 1 to 99.52% in Epoch 17, while validation accuracy improved from 89.56% 

to 98.63%. Similarly, training loss decreased from 2.1238 to 0.8382, and validation loss 

dropped from 1.1773 to 0.8368, indicating the model ability to minimize errors effectively. 

The consistent learning rate of 0.00001 throughout the training process contributed to these 

steady improvements. With a total training time of 23h 37m 24s, the results highlighted the 

model's robustness and generalization capability, ensuring no signs of overfitting. 

 

Table 3 

Training and validation performance metrics analysis 

Epoch Loss Accuracy Validation Loss Validation Accuracy Learning Rate Time (s/step) 

1 2.1238 0.6131 1.1773 0.8956 0.00001 5066 

2 1.2297 0.8815 1.0571 0.9489 0.00001 5009 

3 1.0932 0.9302 0.9983 0.9637 0.00001 4997 

4 1.0306 0.9506 0.9615 0.9695 0.00001 4996 

5 0.9886 0.9630 0.9462 0.9754 0.00001 4997 

6 0.9581 0.9718 0.9218 0.9794 0.00001 4995 

7 0.9347 0.9785 0.9061 0.9806 0.00001 5004 

8 0.9171 0.9823 0.8912 0.9827 0.00001 5007 

9 0.9030 0.9851 0.8836 0.9831 0.00001 4989 

10 0.8899 0.9876 0.8763 0.9837 0.00001 4998 

11 0.8783 0.9903 0.8697 0.9837 0.00001 4994 

12 0.8711 0.9915 0.8648 0.9845 0.00001 4995 

13 0.8626 0.9927 0.8556 0.9856 0.00001 5004 

14 0.8559 0.9933 0.8503 0.9852 0.00001 4999 

15 0.8496 0.9942 0.8472 0.9855 0.00001 4999 

16 0.8443 0.9943 0.8453 0.9855 0.00001 4995 

17 0.8382 0.9952 0.8368 0.9863 0.00001 5000 

 

Figure 4 illustrates the progressive improvement in training and validation accuracy 

across 17 epochs, showcasing the model's enhanced performance and generalization. On the 

other hand, figure 5 depicts the steady decline in training and validation loss, highlighting the 

model's effective error minimization over time.  
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Figure 4  

Training and validation accuracy 

 

 

Figure 5 

Training and validation loss 

 

Tables 4 and 5 showcase the classification outcomes for all 76 crop disease categories, 

thoroughly assessing the Model performance across a broad spectrum of crop diseases. 
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Table 4 

Classification performance for crop disease classes (0 To 40) 

Class Name Precision Recall F1-Score Support 

Apple___Apple_scab 1.00 0.99 1.00 200 

Apple___Black_rot 1.00 1.00 1.00 200 

Apple___Cedar_apple_rust 1.00 1.00 1.00 200 

Apple___healthy 1.00 1.00 1.00 329 

Banana_cordana 1.00 1.00 1.00 200 

Banana_healthy 0.99 1.00 1.00 200 

Banana_pestalotiopsis 0.99 0.99 0.99 200 

Banana_sigatoka 1.00 0.99 1.00 200 

Bean_angular_leaf_spot 1.00 0.98 0.98 201 

Beans_healthy 1.00 0.99 1.00 200 

Blueberry___healthy 1.00 1.00 1.00 301 

Cassava_brown_spot 1.00 1.00 1.00 296 

Cassava_green_mite 0.97 0.95 0.96 203 

Cassava_healthy 0.98 0.99 0.98 239 

Cassava_mosaic 0.97 0.98 0.97 241 

Cherry___Powdery_mildew 1.00 1.00 1.00 211 

Cherry___healthy 1.00 0.99 1.00 200 

Corn___Cercospora_leaf_spot Gray_leaf_spot 0.97 0.96 0.96 201 

Corn___Common_rust 1.00 1.00 1.00 239 

Corn___Northern_Leaf_Blight 0.95 0.97 0.96 200 

Corn___healthy 1.00 0.99 0.99 233 

Grape___Black_rot 0.99 1.00 1.00 236 

Grape___Esca_(Black_Measles) 1.00 0.99 1.00 277 

Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1.00 1.00 1.00 215 

Grape___healthy 1.00 1.00 1.00 200 

Maize _grasshoper 0.99 0.98 0.99 200 

Maize-leaf_spot 0.75 0.67 0.71 248 

Maize_fall_Armyworm 0.95 1.00 0.97 201 

Maize_healthy 0.91 0.99 0.95 199 

Maize_leaf_beetle 0.97 0.97 0.97 199 

Maize_leaf_blight 0.72 0.71 0.72 200 

Maize_streak_virus 0.91 0.89 0.90 199 

Orange___Haunglongbing_(Citrus_greening) 1.00 1.00 1.00 1102 

Peach___Bacterial_spot 1.00 1.00 1.00 460 

Peach___healthy 1.00 1.00 1.00 200 

Pepper, _bell___Bacterial_spot 1.00 0.99 1.00 200 

Pepper,_bell___healthy 1.00 1.00 1.00 296 

Potato___Early_blight 1.00 1.00 1.00 200 

Potato___Late_blight 1.00 0.99 0.99 201 
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Table 5 

Classification performance for crop disease classes (41 to 76) 

Class Name Precision Recall F1-Score Support 

Potato___healthy 1.00 1.00 1.00 200 

Raspberry___healthy 1.00 1.00 1.00 201 

Rice_bacterial_leaf_blight 1.00 1.00 1.00 200 

Rice_brown_spot 0.99 0.98 0.98 201 

Rice_healthy 1.00 1.00 1.00 201 

Rice_leaf_blast 0.98 0.99 0.99 200 

Rice_narrow_brown_spot 1.00 1.00 1.00 200 

Soybean___healthy 1.00 1.00 1.00 1018 

Squash___Powdery_mildew 1.00 1.00 1.00 367 

Strawberry___Leaf_scorch 1.00 1.00 1.00 222 

Strawberry___healthy 1.00 1.00 1.00 200 

Sugarcane_Healthy 0.97 0.99 0.98 200 

Sugarcane_Mosaic 0.97 0.98 0.97 201 

Sugarcane_RedRot 0.99 1.00 0.99 200 

Sugarcane_Rust 1.00 0.96 0.98 200 

Sugarcane_Yellow 0.99 0.99 0.99 200 

Sunflower_Downy mildew 0.99 0.99 0.99 200 

Sunflower_Fresh Leaf 1.00 1.00 1.00 200 

Sunflower_Gray mold 1.00 1.00 1.00 201 

Sunflower_Leaf scars 0.99 0.99 0.99 200 

Tea_Anthracnose 1.00 1.00 1.00 201 

Tea_algal leaf 1.00 1.00 1.00 200 

Tea_bird eye spot 1.00 1.00 1.00 201 

Tea_brown blight 1.00 1.00 1.00 200 

Tea_healthy 1.00 1.00 1.00 200 

Tea_red leaf spot 1.00 1.00 1.00 200 

Tomato___Bacterial_spot 0.99 1.00 1.00 426 

Tomato___Early_blight 0.99 0.96 0.97 201 

Tomato___Late_blight 0.99 0.99 0.99 382 

Tomato___Leaf_Mold 1.00 1.00 1.00 200 

Tomato___Septoria_leaf_spot 1.00 0.99 1.00 354 

Tomato___Spider_mites Two-spotted_spider_mite 0.98 1.00 0.99 335 

Tomato___Target_Spot 0.99 0.99 0.99 281 

Tomato___Tomato_Yellow_Leaf_Curl_Virus 1.00 1.00 1.00 1072 

Tomato___Tomato_mosaic_virus 1.00 1.00 1.00 200 

Tomato___healthy 1.00 1.00 1.00 318 

bean_rust 0.97 1.00 0.98 201 

 

The confusion matrices shown in figure 6 (a to f) illustrate the performance of the 

disease detection task across all classes (ranging from class 0 to class 76). These matrices 

display actual class labels on the X-axis and predicted labels on the Y-axis, providing insights 

into the Model classification accuracy for each class. Figure 12 illustrates the ROC curve, 
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which showcases the model performance across different classification thresholds. The AUC 

score in the figure reflects the Model's ability to effectively differentiate between positive and 

negative classes, with higher AUC values indicating stronger predictive power and better 

overall performance. 

 

Figure 6 

Confusion matric for classes 0-10 

 

Confusion matric for classes 10-20 
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Confusion matric for classes 30-40 

 

 

Confusion matric for classes 50-40 
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Confusion matric for classes 60-70 

 

 

Confusion matric for classes 60-76 
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Figure 7 

ROC- AUC Scores 

 

 

 

4.5. Ablation Studies 

Table 6 displays the analysis of how data augmentation techniques influence the model 

performance. Each transformation aimed to introduce variability, simulating real-world 

conditions. The rotation randomly altered the leaf's orientation, while flipping helped the 

model generalize across orientations. Brightness adjustment simulated lighting conditions, and 

zoom introduced scale and focus variation. These augmentations enhanced the model 

generalizability and performance in diverse environmental conditions. 
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Table 6 

Augmentation techniques 

Transformation Type Range/Details 

Rotation 0, 90, 180, or 270 degrees 

Flipping Horizontal flip and vertical flip 

Brightness Adjustment Between 0.7 (dark) and 1.3 (bright) 

Zoom Cropped a random portion and resized to 224x224 pixels 

 

The resulting sample augmented images in figure 8 demonstrate the transformations 

applied during preprocessing. The augmentation techniques enhanced model training by 

generating a diverse dataset while preserving the distinguishing features of crop diseases. 

 

Figure 8 

Sample augmented images 

 

 

On the unseen data, 249 images were processed, with 239 correctly classified, resulting 

in an accuracy of 95.98%. Only 10 images (4.02%) were misclassified, further supporting the 

model overall strong performance. The model demonstrated its ability to accurately classify 

plant diseases, even when the confidence scores were low for a few classes lacking dominant 

features. This suggested that the proposed model, as shown in figure 9, generally distinguished 

between healthy and diseased plants. 

The proposed model capacity to deliver high-confidence predictions for diseases with 

strong visual cues, alongside moderate performance for others, highlights its practical utility 

for real-world deployment. The model proved its ability to classify plant diseases effectively 

in real-world scenarios, as demonstrated by the sample results in figure 10. When applied to 

field data, these samples illustrate the model performance, showcasing its ability to provide 

accurate predictions across various plant diseases with confidence scores. 
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Figure 9 

Classification summary on unseen images 

 

 

Figure 10 

Random classes actual vs. predicted classification 

 

 

4.6 Comparison with Other Models 

The proposed hybrid model consistently outperformed existing crop disease detection 

models, achieving high accuracy rates that surpass traditional CNN-based and ViT-based 

approaches. As summarized in table 7, several models were tested, including MobileNetV2, 

EfficientNetB0, EfficientNetV2, DenseNet121, DenseNet50, ResNet152, AlexNet, and 

Custom CNN, all on the same dataset for comparison.  
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Table 7 

Comparative performance of all models 

Model Training Accuracy Validation Accuracy Training Loss Validation Loss 

Proposed Model 99.61% 98.63% 0.0331 0.8458 

MobileNetV2 98.92% 98.21% 0.0507 0.8663 

EfficientNetB0 97.65% 91.02% 0.0811 1.2424 

EfficientNetV2 99.08% 97.95% 0.0702 1.0291 

DenseNet121 98.80% 97.75% 0.0675 1.0733 

DenseNet50 98.75% 96.11% 0.0706 1.0975 

ResNet152 98.74% 96.45% 0.0852 1.2092 

AlexNet 97.88% 93.50% 0.1189 1.5391 

Custom CNN 92.10% 61.84% 0.2750 2.5675 

 

As shown in table 8, the final trained model sizes varied significantly, with AlexNet 

being the largest at 551,564 KB due to its complex architecture. ResNet followed with 100,500 

KB, while the DEMF Model was slightly smaller at 104,625 KB, optimized for edge 

computing tasks. MobileNetV2 was the smallest at 30,908 KB, designed for lightweight 

operations. EfficientNetB0 and EfficientNetV2 were compact, with sizes around 74,000 KB, 

offering a balance of performance and efficiency. DenseNet121 was around 97,697 KB, and 

DenseNet50 was more compact at 42,015 KB, focusing on feature reuse. The Custom CNN 

was the smallest Model at 8,272 KB, ideal for resource-constrained environments.   

 

Table 8 

Model size comparisons 

Model Size (KB) Size (MB) 

Proposed Model 104,625 102.6 

MobileNetV2 30,908 30.2 

EfficientNetB0 74,256 72.5 

EfficientNetV2 73,983 72.3 

DenseNet121 97,697 95.5 

DenseNet50 42,015 41.1 

ResNet 100,500 98.1 

AlexNet 551,564 539.5 

Custom CNN 8,272 8.1 
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4.7 Statistical Validation  

Statistical testing assessed performance differences across model variations using a 

separate dataset. As shown in table 9, the proposed model outperformed others across all 

evaluation metrics. The model achieved the highest performance, with a 95.1% Bayesian 

superiority probability over ShuffleNet, which was second, confirming its suitability for 

deployment. 

 

Table 9 

Statistical comparison of the models 

Model Accuracy Precision Recall F1-score Kappa AUC Rank 

Proposed Model   0.990 0.993421 0.990085 0.990365 0.989855 0.999997 1st 

ShuffleNet 0.982 0.983906 0.982153 0.980596 0.981740 0.999991 2nd 

EfficientNetV2 0.972 0.976770 0.973841 0.973155 0.971595 0.999935 3rd 

VGG-16 0.972 0.976770 0.973841 0.973155 0.971595 0.999935 3rd 

DenseNet 0.956 0.966270 0.962312 0.958693 0.955368 0.999863 4th 

AlexNet 0.942 0.953236 0.947609 0.942789 0.941164 0.998949 5th 

DenseNet50 0.884 0.907292 0.889661 0.883751 0.882337 0.998823 6th 

 

Cohen’s Kappa (κ) measures the level of agreement between two raters (or classifiers) 

while considering the possibility of agreement occurring by chance. Unlike simple accuracy, 

Kappa accounts for random agreement, making it a more robust metric for classification 

performance assessment. It was calculated as shown: 

𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
      (32) 

 

Where: 

𝑝𝑜 = Observed agreement (i.e., accuracy) 

𝑝𝑒 =Expected agreement due to chance 

A κ value close to 1 indicates near-perfect agreement, whereas a value close to 0 

suggests agreement is no better than random chance. Our experiment calculated Cohen’s 

Kappa to be 0.99, suggesting a strong agreement between the model predictions and ground 

truth labels. 

McNemar’s Test was also used to compare the top two classification models from all 

our test models by analyzing the differences in their misclassification rates. It is particularly 
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useful for paired data, such as models evaluated on the same dataset, and was represented as 

shown. 

𝜒2 =
(𝑏−𝑐)2

𝑏+𝑐
      (33) 

Where: 

𝑏 = Instances misclassified by Model A but correctly classified by Model B 

 𝐶= Instances misclassified by Model B but correctly classified by Model A 

 

A low p-value (< 0.05) suggests a significant difference in model performance. The 

test yielded a 𝑝-value of 0.03, indicating a statistically significant difference between the 

models.  

The permutation test was used to determine whether the accuracy difference between 

the top two models were statistically significant. It works by shuffling the labels multiple times 

and computing the difference in accuracy each time, which was calculated as follows: 

𝑝 =
 number of times shuffled difference ≥ observed difference 

 total permutations 
    (34) 

 

With 1000 permutations, our computed 𝑝-value was 0.04, indicating that the difference 

in model performance is statistically significant. 

The confidence interval provides a range within which the true difference in accuracy 

between models lies, with a specified confidence level (typically 95%), and it was calculated 

as follows: 

(�̂� − 1.96 × 𝑆𝐸, �̂� + 1.96 × 𝑆𝐸)    (35) 

Where,  

�̂� = Observed difference in accuracy. 

𝑆𝐸=Standard error of the difference. 

Confidence variance was applied to quantify the spread of model confidence scores, 

indicating reliability. It was calculated as follows: 

Variance =
1

𝑁
∑  𝑁
𝑖=1 (𝑥𝑖 − 𝜇)2    (36) 

Where: 

𝑥𝑖 =Individual confidence scores 

𝜇 = Mean confidence score 
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𝑁= Total predictions 

Table 10 shows the confidence variance for different models, where lower values 

indicate more stable confidence predictions. MoViT had the lowest confidence variance, 

suggesting it was the most consistent in its confidence estimates, while DenseNet50 had the 

highest variance, implying greater fluctuations. 

 

Table 10  

Confidence variance by model 

Model Confidence Variance 

DenseNet50 0.000032 

AlexNet 0.000027 

DenseNet 0.000022 

EfficientNetV2 0.000017 

VGG_16 0.000015 

ShuffleNet 0.000014 

Proposed Model 0.000012 

 

Confidence score distributions were also calculated, as shown in figure 11. This metric 

is essential for understanding the reliability of model predictions. The results indicate the 

proposed model (DEMF) exhibits superior confidence score distributions compared to other 

models.  

 

Figure 11 

Confidence scores distributions across models 

 



ISSN 2799-1601 (Print) 2799-161X (Online) | 31 

                                                                                        

   

   

Levene’s test determines whether multiple models have equal variance in their 

confidence scores. The results indicate that the proposed model exhibited significantly lower 

variance than others. With its lightweight design and real-time efficiency, the proposed model 

emerged as the most stable in variance comparisons. This test was calculated as follows: 

𝑊 =
(𝑁−𝑘)

(𝑘−1)
×

∑  𝑘
𝑖=1𝑁𝑖(𝑍𝑖.−𝑍..)

2

∑  𝑘
𝑖=1 ∑  

𝑁𝑖
𝑗=1

(𝑍𝑖𝑗−𝑍𝑖.)
2    (37) 

Where: 

𝑁= Total samples 

𝑘= Number of models 

𝑍𝑖𝑗= Absolute deviations from the median 

 

A low 𝑝-value (< 0.05), as shown in table 11, indicates significant variance differences 

among models.  

 

Table 11 

Pairwise variance comparisons (Levene's Test) 

Comparison p-value Significant (0.05) Significant (Adj.) 

Proposed Model vs DenseNet50 1.674901e-52 Yes True 

Proposed Model vs AlexNet 1.591150e-20 Yes True 

Proposed Model vs DenseNet 1.518670e-11 Yes True 

Proposed Model vs ShuffleNet 3.325640e-12 Yes True 

Proposed Model vs EfficientNetV2 1.465245e-06 Yes True 

Proposed Model vs VGG_16 1.465245e-06 Yes True 

ShuffleNet vs DenseNet50 1.532226e-52 Yes True 

ShuffleNet vs AlexNet 3.382618e-21 Yes True 

ShuffleNet vs DenseNet 3.325640e-12 Yes True 

ShuffleNet vs EfficientNetV2 2.190516e-02 Yes False 

ShuffleNet vs VGG_16 2.190516e-02 Yes False 

EfficientNetV2 vs DenseNet50 4.946421e-37 Yes True 

EfficientNetV2 vs AlexNet 4.130888e-13 Yes True 

EfficientNetV2 vs DenseNet 1.465245e-06 Yes True 

EfficientNetV2 vs VGG_16 6.756542e-01 No False 

VGG_16 vs DenseNet50 4.946421e-37 Yes True 

VGG_16 vs AlexNet 4.130888e-13 Yes True 

VGG_16 vs DenseNet 1.465245e-06 Yes True 

DenseNet vs DenseNet50 2.039134e-12 Yes True 

DenseNet vs AlexNet 2.190516e-02 Yes False 

AlexNet vs DenseNet50 4.111105e-06 Yes True 
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The Kruskal-Wallis test evaluated significant differences in confidence scores among 

multiple models. The test resulted in H = 614.90, p = 1.4237e-129, indicating a significant 

difference in model performance. Given the extremely low p-value, we can confidently reject 

the null hypothesis, confirming that at least one model exhibited a statistically different 

confidence score compared to the others.  

 

4.8 Comparative Analysis with Existing Hybrid Models 

Table 12 presents a comparative analysis of classification accuracy across various 

studies, demonstrating the superior performance of the proposed model. The model achieved 

the highest accuracy of 98.63%, showcasing its effectiveness in classification due to advanced 

architectural refinements and optimized feature extraction. 

 

Table 12 

Comparing with existing hybrid multi multi-classification models 

Studies Classification Accuracy 

Parez et al. (2023) 98.00%% 

Zhu et al. (2023) 97.50%% 

Shah et al. (2024) 90.00% 

Barman et al. (2024) 90.99% 

Touvron et al. (2021) 85.02% 

Proposed model 98.63% 

 

Figure 11 

App screenshots 
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Mobile App integration. We implemented a mobile app powered by the proposed 

model for real-time disease detection across 22 crops in low-resource environments. As shown 

in the sample screenshots in figure 11, the app enabled farmers to capture leaf images using 

their phone's camera for quick and reliable disease classification. 

Ethical and Data Privacy Considerations. The app focuses exclusively on leaf disease 

diagnosis while ensuring ethical AI use and compliance with Google Play Store guidelines. 

Users grant camera and gallery access only when capturing leaf images, with in-app 

disclaimers clarifying that no personal data or other plant parts are processed. To enhance 

accuracy, bias audits assess performance across diverse leaf types, and community-driven 

updates allow farmers to flag misdiagnosed samples for prioritized retraining. Additionally, 

the app features an expert module, enabling real agronomists to provide insights and verify 

diagnoses for improved reliability. For ambiguous cases, confidence disclaimers encourage 

expert consultation, and an error-reporting mechanism ensures that misclassified samples are 

reviewed, enhancing model fairness and accuracy. 

 

5. Conclusion  

The proposed model achieved state-of-the-art accuracy (99.52% training, 98.63% 

validation) while maintaining computational efficiency (30.4 MB post-quantization). 

Integrating EfficientNetV2’s multi-scale feature extraction with MobileNetV2’s lightweight 

architecture optimizes precision and deployability—crucial for low-resource environments. 

Despite its compact size and 0.094s inference latency, real-world deployment presents 

additional challenges beyond computational constraints. Preliminary tests on low-end 

smartphones (Android 8.0, ≤2GB RAM) showed a 3% drop in inference speed for high-

resolution images, highlighting the need for optimized image pre-processing techniques. 

Expanding the dataset with a broader range of images is critical for improving model 

generalization. Testing on an external dataset of 1,200 images underscored the importance of 

incorporating underrepresented species and real-world variations such as occlusions and 

uneven lighting. Increasing data diversity will enhance model robustness and practical 

applicability. Additionally, federated learning partnerships with local cooperatives should be 

encouraged to facilitate continuous model adaptation. While optimized for individual use, 

scaling the model for large agricultural systems requires edge-to-cloud workflows, as parallel 
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inference across 1,000+ devices (e.g., drone fleets) demands dynamic load balancing to prevent 

server bottlenecks.  

The model exhibited stable predictions, with the lowest confidence variance (0.000012) 

among benchmarks. A Kruskal-Wallis test confirmed significant performance differences 

across models (H = 614.90, p = 1.4237e−129), with Bayesian analysis indicating a 100% 

superiority probability over DenseNet50. Furthermore, a 96% accuracy on 249 unseen field 

images reinforces its reliability in diverse settings. Future work should focus on adaptive 

quantization for broader hardware compatibility, targeting ultra-low-power devices (<1GB 

RAM). Additionally, federated learning pipelines should be explored to integrate region-

specific data without centralized collection. Including multimodal inputs, such as soil moisture 

and weather trends via lightweight sensor fusion, will further enhance predictive capabilities. 

Finally, expanding uncertainty-aware interfaces, such as confidence-based agrochemical 

dosage recommendations, will improve real-world decision support for farmers. 
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