
International Journal of Science, Technology, Engineering and Mathematics

Volume 5 Issue 2 June 2025

DOI: https://doi.org/10.53378/ijstem.353186

© The author (s). Published by Institute of Industry and Academic Research Incorporated.

 This is an open-access article published under the Creative Commons Attribution (CC BY 4.0)

license, which grants anyone to reproduce, redistribute and transform, commercially or non-

commercially, with proper attribution. Read full license details here:

https://creativecommons.org/licenses/by/4.0/.

Edge-optimized multimodal cross-fusion

architecture for efficient crop disease

detection
1Thomas Kinyanjui Njoroge, 2Kelvin Mugoye Shindu & 2Rachael

Kibuku

Abstract

Accurate and timely crop disease detection is critical for reducing agricultural losses and ensuring food security

in low-resource settings. Traditional diagnostic methods, such as manual inspections, are often inefficient and

error-prone. Existing deep learning models (e.g., ResNet50, Inception V3) struggle with computational

inefficiency and poor generalizability in real-world farming contexts. This study proposes a lightweight

multimodal fusion model integrating EfficientNetV2 and MobileNetV2, optimized for edge deployment. The

architecture leverages compound scaling and feature fusion to recognize subtle disease patterns, and it was

fine-tuned on a globally diverse dataset (PlantVillage and field-collected leaf images). The proposed model

achieved state-leading metrics (99.0% accuracy, 0.993 precision, 0.990 F1-score, AUC = 0.999997),

outperforming benchmarks like ShuffleNet and DenseNet50 (ranked 2nd–6th). Statistical validation via the

Kruskal-Wallis test confirmed significant performance differences across models (H=614.90,

p=1.4237e−129), with Bayesian analysis showing a 100% superiority probability over DenseNet50. Notably,

the model exhibited the lowest confidence variance (0.000012) compared to alternatives (0.000014–0.000032),

demonstrating unmatched prediction stability. Deployment on low-end mobile devices posed challenges such

as computational constraints and offline usability. However, the TensorFlow Lite-powered mobile app

addressed these limitations, offering real-time, offline disease classification with 0.094-second inference

latency on devices with ≤2GB RAM. Validated on 249 unseen field images (95.98% accuracy), this solution

bridges the gap between high-performance deep learning and real-world agricultural needs, empowering

smallholder farmers with an accessible and scalable tool.

Keywords: crop disease detection, multimodal fusion model, transfer learning, edge computing, EfficientNetV2,

MobileNetV2

Article History:
Received: January 28, 2025 Revised: March 9, 2025

Accepted: March 11, 2025 Published online: May 15, 2025

Suggested Citation:
Njoroge, T.K., Shindu, K.M. & Kibuku, R. (2025). Edge-optimized multimodal cross-fusion architecture for

efficient crop disease detection. International Journal of Science, Technology, Engineering and Mathematics,

5(2), 1-37. https://doi.org/10.53378/ijstem.353186

About the authors:
1Corresponding author. Department of Computer Science and Informatics, Karatina University, Kenya. Email:
tnjoroge@karu.ac.ke
2Software Development & Information Systems (SD&IS) Department, School of Technology, KCA University, Kenya.

https://doi.org/10.53378/ijstem.353186
https://creativecommons.org/licenses/by/4.0/
https://iiari.org/journals/ijstem
https://doi.org/10.53378/ijstem.353186
mailto:tnjoroge@karu.ac.ke

2 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

1. Introduction

Recent technological advancements have enhanced disease detection through machine

learning (ML), computer vision, and deep learning (DL) innovations, transforming the domain

and making disease identification precise and effective. Kaleem et al. (2021) demonstrated that

these modern techniques use sophisticated algorithms to analyze plant leaf photographs,

enabling more accurate detection of disease patterns. Given the challenges of distinguishing

between similar plant diseases, integrating image processing with ML and computer vision is

crucial for achieving reliable diagnoses. DL has made remarkable strides in image

classification, achieving notable accuracy and speed in detecting and classifying crop leaf

diseases. Despite its advancements, Abdu et al. (2020) illustrated that DL methods face

challenges, like the need for extensive training data. Transfer learning (TL) has been

demonstrated to be a powerful answer to these limitations, enhancing learning efficiency by

leveraging knowledge from pre-trained models. TL also helps reduce overfitting, improve

interpretability, and lower computational costs, which is essential for practical model training

and performance. Mohammed and Yusoff (2023) also concur that TL models are lightweight

and compatible with low-end graphics processing units (GPUs), which leads to shorter training

times and lower computational costs. Moreover, TL reduces the likelihood of models making

incorrect assumptions about new and unfamiliar data, enabling deep learning models to

perform more efficiently. Zhao et al. (2024) explain that collecting and organizing large image

databases for training machine learning models comes with significant costs, both in time and

finances. Static methods, which rely on fixed datasets and algorithms, often struggle with

adaptability and can lead to decreased performance when faced with new or varied data.

As Nguyen et al. (2023) also observe, these static approaches may become outdated as

conditions change or as new types of plant diseases emerge. There is a growing need for

dynamic detection methods that adapt to evolving data and situations to address these issues.

Data regularization and augmentation are integral to these dynamic approaches, improving

model generalization and accuracy. These methods offer a more flexible and robust solution

than static methods by incorporating descriptive features from diverse sources and dynamically

updating models. Sarker (2021) demonstrates that this transition to dynamic detection

approaches is crucial for effectively handling the complexities and variabilities of real-world

data. Hence, this study addressed the challenges of crop disease detection by utilizing advanced

image classification techniques, leveraging the globally recognized PlantVillage dataset and

ISSN 2799-1601 (Print) 2799-161X (Online) | 3

locally sourced crop images, and the need for models to capture both low-range and long-range

dependencies in agricultural data. Existing models struggle with generalization and overfitting,

particularly when trained on small or imbalanced datasets, and often fail to balance accuracy

with computational efficiency. The main contributions of this study are as follows:

We propose a hybrid architecture that integrates MobileNetV2 and EfficientNetV2 to

effectively capture both low-range and long-range dependencies in the data.

We implement feature fusion via concatenation, combining extracted features from

both CNN models to form a comprehensive representation, leveraging fine-grained details

from both networks.

We incorporate dropout and batch normalization to enhance model generalization,

prevent overfitting, and ensure stable feature learning during training.

2. Literature Review

2.1 Plant Disease Detection

Effective plant disease identification is vital for precision agriculture, impacting plant

health and productivity. With increasing disease outbreaks, timely detection is crucial for

diagnosis, control, and damage assessment. Early identification allows targeted treatments and

prevents significant economic losses. Abdu et al. (2020) describe key metrics that include

disease incidence (proportion of affected plants), severity (extent of damage), and consequence

(impact on yield). Computer vision has enhanced plant disease detection beyond traditional

human methods, which are labour-intensive and subjective (Kemi et al., 2022). Automated

systems use machine learning to analyze plant images, recognizing patterns and features like

texture, color, and shape. According to Zheng et al. (2019), classifiers detect diseases by

comparing extracted features with categorized datasets. DL models like CNNs offer improved

accuracy by processing large datasets and identifying subtle patterns. These advancements

facilitate more effective disease segmentations on images, crucial for precise diagnosis and

treatment. Color analysis is pivotal in plant disease detection, especially when identifying

discoloration caused by various diseases. Color is often one of the earliest visible symptoms,

and analyzing color variations can provide critical information about the plant's health. Sala et

al. (2020) identify that the common color spaces like Hue-Saturation-Value (HSV), CIELAB

(LAB), and RGB are frequently used to detect these changes, with HSV and LAB being

particularly robust against variations in lighting conditions. RGB is an additive color model

4 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

where colors are created by combining different intensities of red, green, and blue light (Abbasi

et al., 2023). Each component can range from 0 to 255, with (255, 255, 255) producing white

and (0, 0, 0) resulting in black. LAB, which separates lightness from color-opponent

dimensions, further refines this analysis, helping to differentiate healthy from diseased tissues

under various conditions. Texture-based disease detection is highly effective for diagnosing

plant diseases by quantifying surface characteristics and identifying subtle changes that may

not be readily visible through color or shape alone.

2.2 Multimodal Fusion Models

Multimodal fusion, as demonstrated by Liu et al. (2024), involves integrating different

types of data or features from multiple sources. This is crucial for improving the reliability and

precision of disease detection. Advanced frameworks for detecting plant leaf diseases have

achieved considerable success in early diagnosis. Researchers are developing and refining

various fusion methods for automated disease classification, including feature fusion and deep

learning. Feature fusion is a machine learning and computer vision technique that enhances

classification tasks by combining features from different sources or models. Mi et al. (2020)

introduced C-DenseNet, an enhancement of DenseNet architecture. C-DenseNet't incorporates

the block attention module into DenseNet, which uses attention mechanisms to refine feature

extraction by focusing on essential regions and channels. This fusion enhances DenseNet's

ability to capture and emphasize critical features relevant to crop disease detection, as shown

in the works of Sladojevic et al. (2016). C-DenseNet can potentially identify subtle disease

symptoms more effectively by focusing on key features in plant images.

Dong et al. (2020) incorporated a coordinate attention mechanism into MobileNet to

boost the Model performance while reducing its parameter count. MobileNetV2, known for its

efficient depthwise separable convolutions, was further improved with coordinate attention,

which allowed the Model to focus on spatially significant regions. This combination helped

MobileNetV2 to better capture disease-related features in plant images. Mousavi and Farahani

(2022) proposed an improved VGG16 grape disease detection model incorporating transfer

learning. The VGG16 architecture, known for its deep convolutional layers, was optimized for

mobile devices using transfer learning techniques. This fusion allowed the system to process

images captured via mobile phones and provided real-time disease identification.

ISSN 2799-1601 (Print) 2799-161X (Online) | 5

2.3 Features Extraction Process

Feature extraction using two parallel models involves independently processing input

data through each model to derive distinct feature representations. These extracted features are

then fused, often through concatenation or weighted averaging, to leverage the unique

strengths of each architecture, ultimately enhancing overall model performance. An image is

represented as a tensor with dimensions.(𝑛ℎ, 𝑛𝑤 , 𝑛𝑐), where 𝑛𝑤 is the height, 𝑛𝑤 and 𝑛𝑐

represents the number of channels. The feature extraction process relies on convolution

operations, where a filter (or kernel) of size is used. (𝑓, 𝑓, 𝑛𝑐), slides across the image to

capture patterns such as edges and textures. This process is mathematically expressed as:

Conv(𝐼, 𝐾)(𝑥,𝑦) = ∑  
𝑓
𝑖=1 ∑  

𝑓
𝑗=1 ∑  

𝑛𝑐
𝑘=1 𝐾(𝑖,𝑗,𝑘) × 𝐼(𝑥+𝑖−1,𝑦+𝑗−1,𝑘) (1)

To introduce non-linearity, a Rectified Linear Unit (ReLU) activation function is

applied element-wise to the feature maps, ensuring that negative values are set to zero while

retaining positive values. The dimensions of the activated feature maps remain, (𝑛ℎ
′ , 𝑛𝑤

′ , 𝑛𝑓).

Pooling operations, such as max pooling, are then applied to reduce the spatial dimensions

while preserving key features. Given a pooling window of size 𝑝 × 𝑝, the pooled feature map

at position (𝑥, 𝑦, 𝑐) is computed as:

𝑃(𝑥,𝑦,𝑐) = 𝑚𝑎𝑥
𝑖=0

𝑝−1
 𝑝 − 1
𝑗=0

𝐴(𝑥⋅𝑝+𝑖,𝑦⋅𝑝+𝑗,𝑐) (2)

This process downsamples the feature maps, reducing computational complexity while

retaining the most essential information. These steps are repeated across multiple

convolutional and pooling layers, progressively refining and abstracting features. After several

layers, the resulting pooled feature maps denoted as 𝑃𝐿, are flattened into a single feature

vector 𝑉, with dimensions and are calculated as:

𝑉 ∈ ℝ(𝑛ℎ
𝐿×𝑛𝑤

𝐿 ×𝑛𝑓
𝐿)

 (3)

The flattened feature vector is then passed through fully connected (FC) layers, where

each layer applies linear transformations followed by activation functions. The transformation

at the 𝑖-th layer is defined as:

𝐹𝐶𝑖 = 𝜎(∑  𝑁
𝑗=1 𝑉𝑗 ⋅ 𝑊𝑖𝑗

𝐷 + 𝑏𝑖
𝐷) (4)

6 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Where, 𝑊𝐷 and 𝑏𝐷 represent the weights and biases of the dense layer. In

classification tasks, a SoftMax function is typically applied to the output of the final FC layer

to convert activations into class probabilities, as shown:

�̂�𝑖 =
𝑒𝐹𝐶𝑖

∑  𝐾
𝑗=1 𝑒

𝐹𝐶𝑗
, for 𝑖 = 1,2, … , 𝐾 (5)

Where 𝐾 is the number of output classes. The predicted class, �̂�pred is determined by

selecting the index 𝑖 corresponding to the highest probability, as shown:

�̂�pred = arg𝑚𝑎𝑥
𝑖
 �̂�𝑖 (6)

This approach enhances the model’s ability to capture diverse feature representations

by leveraging parallel feature extraction pathways, improving classification accuracy and

efficiency.

3. Methodology

The proposed architecture, as shown in figure 1, comprises two parallel branches:

EfficientNetV2 and MobileNetV2, each designed to optimize input data through tailored

preprocessing steps. The ReLU (Rectified Linear Unit) activation function is employed in the

convolutional layers to introduce non-linearity, effectively addressing the vanishing gradient

problem. ReLU activates only positive values while zeroing out negative ones, ensuring the

Model captures critical non-linear features and achieves faster convergence. The architecture

incorporates compound scaling, uniformly scaling network depth, width, and resolution to

balance accuracy and computational efficiency. This approach ensures consistent performance

across all layers, maintaining a stable trade-off between feature extraction quality and

computational demands. The outputs from both branches are fed into dedicated fully connected

layers (FC1) with dimensions specified by 𝑓𝑐_𝑑𝑖𝑚. These outputs are concatenated to form a

combined feature set, allowing the Model to integrate unique feature representations from

EfficientNetV2 and MobileNetV2. EfficientNetV2 captures complex patterns through its

advanced scaling, while MobileNetV2 provides lightweight feature extraction, enhancing

efficiency for edge environments. The concatenation preserves the full feature space from each

branch, resulting in a comprehensive representation for downstream classification tasks. This

concatenated output is processed through an additional set of fully connected layers (FC2) and

a SoftMax layer for classification, producing the final output.

ISSN 2799-1601 (Print) 2799-161X (Online) | 7

Figure 1

Proposed model architecture

After loading the dataset, pixel values underwent normalization to a range of [0,1]. This

step was crucial for enhancing the Model convergence during training. The normalization of

pixel values was mathematically expressed as follows:

Normalized_pixel =
 pixel_value

255.0
 (7)

Next, a stratified sampling technique was employed to ensure that the distribution of

classes within the training and validation datasets remained consistent with the original dataset.

We calculated the number of samples designated for the training set based on stratified

sampling as follows:

Train_size = (
 number of samples in class

 total samples
) × total samples × (1 − test_size) (8)

Train_size represented the number of samples allocated to the training set, while

total samples denote the total number of images within the dataset. The variable test_size

specifies the proportion of the dataset reserved for validation, with a value of 0.2 indicating an

80–20 split between training and validation sets. To ensure the reproducibility of the data split

across multiple runs, a random state of 42 was specified. The following algorithm in figure 2

iterated through the dataset, extracting images and labels.

8 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Figure 2

Dataset preparation and stratified split algorithm

Figure 3

Model training and evaluation algorithm

ISSN 2799-1601 (Print) 2799-161X (Online) | 9

For the dual-input model architecture, as shown in figure 3, the training dataset ensured

that both models received the same preprocessed image as input. The dataset originated from

a structured directory, each subdirectory representing a specific class label. Using categorical

labeling, each image was assigned a one-hot encoded vector, providing a unique identifier for

its class. Additionally, the large variability in crop disease images required the model to adapt

effectively without overshooting optimal parameter values during training. Initially, we set the

learning rate to 1×10−3, commonly used as a starting point for many models. However, this

learning rate was too high for our model, leading to unstable training and causing the loss to

fluctuate significantly, which hindered proper convergence. The larger learning rate resulted

in "overshooting," where the model failed to settle into the local minima of the loss function,

making it difficult to achieve optimal training results. To address these issues, we opted for a

lower learning rate of 1 × 10−5. Furthermore, the reduced learning rate provided better

stability during training, preventing the Model from oscillating around the optimal values.

In the one-hot encoding, each class label was represented as a binary vector where only

the entry corresponding to the target class was set to 1, and all others were set to 0.

Mathematically, for a label y belonging to one of the C classes, the one-hot encoding was

calculated as:

onehot (𝑦) = {
1 if class = 𝑦
0 otherwise

 (9)

If the dataset contained N samples, the label matrix after one-hot encoding, Y, will have

the shape N×C. The dataset creation process involved pairing each image with its

corresponding label using from_tensor_slices, allowing seamless mapping between the input data

and labels. Each image-label pair was then processed through a series of transformations,

including resizing to the specified input dimensions, normalizing pixel values, and ensuring

compatibility for dual input model architectures. To leverage both MobileNetV2 and

EfficientNetV2, two input layers were created for dual input processing. Each input layer

accepted images with dimensions 224×224×3. Mathematically, if an input image is represented

as a 3D tensor I, its dimensions are defined as follows:

𝐼 = [224,224,3] (10)

10 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

The first two dimensions (224, 224) represent the height and width of the image, and

the third dimension (3) corresponds to the RGB color channels. This setup allowed each model

to process the input image independently before combining their outputs for further fusion and

analysis. Both models, MobileNetV2 and EfficientNetV2, were pre-trained on the ImageNet

dataset and removed their top (classification) layer. The feature maps produced by each model

were denoted as 𝐹1 and 𝐹2 respectively as shown:

𝐹1 = MobileNetV2(𝐼1), 𝐹2 = EfficientNetV2B0(𝐼2) (11)

Global average pooling (GAP) was then applied to the feature maps 𝐹1 and 𝐹2.GAP

reduced each feature map to a single value by averaging each channel's spatial dimensions

(height and width). For instance, if 𝐹1have dimensions ℎ × 𝑤 × 𝑑, GAP produced an output

of dimension d, which was calculated as follows:

GAP(𝐹1) =
1

ℎ×𝑤
∑  ℎ
𝑖=1 ∑  𝑤

𝑗=1 𝐹1(𝑖, 𝑗, 𝑘) (12)

Where k is the index of each channel. This pooling operation compressed spatial

information, retaining only the most essential features from each channel, facilitating a more

compact representation of the input data while preserving key characteristics. The resulting

pooled output features of both models, x1 and x2, were then concatenated to create a combined

feature vector x which was defined as:

𝑥 = concat(𝑥1, 𝑥2) (13)

Initially, activation functions like sigmoid and tanh were experimented with during

model training. However, these posed significant challenges. Both functions suffered from the

vanishing gradient problem, where gradients became very small during backpropagation. This

slowed down the training process and hindered convergence, particularly in the deeper layers

of the network. We ultimately opted for the ReLU (Rectified Linear Unit) activation function

to address these challenges. This combined vector was then passed through a dense layer with

ReLU activation, which performed an affine transformation followed by a non-linear

activation and was calculated as:

𝑥 = ReLU(𝑊𝑥 + 𝑏) (14)

ISSN 2799-1601 (Print) 2799-161X (Online) | 11

Where W and b are the weights and biases of the dense layer. By normalizing the output

of each layer using the mean and variance calculated across the mini-batch, batch

normalization helps stabilize the learning process, accelerates convergence, and mitigates

issues related to internal covariate shifts. Given an input z, we computed batch normalization

as shown:

𝑧norm =
𝑧−𝜇

√𝜎2+𝜖
 (15)

Where, 𝜇 and 𝜎2 are the batch mean and variance, and ϵ is a small constant. Dropout

was then randomly set as a fraction p of input units to zero, helping to prevent overfitting, and

was defined as:

Dropout(𝑥) = 𝑥 ⋅ mask (16)

The mask is a binary vector with elements set to 0 with probability p=0.3. We used a

dense layer with a softmax activation in the final output layer. By selecting the class with the

highest probability, we could make more confident and accurate predictions, with the softmax

activation ensuring that the sum of all predicted probabilities equalled 1, providing a clear and

interpretable decision and was calculated as follows:

softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑  𝐶
𝑗=1 𝑒

𝑧𝑗
 (17)

Zi is the 𝑖-th logit (raw model output), and C is the number of classes. The model was

then compiled using the Adam optimizer, which adjusted weights based on the gradient's first

and second moments. This allowed the optimizer to adapt the learning rate dynamically during

training, ensuring more efficient convergence. The update rule for each weight w at time step

t was calculated as follows:

𝑤𝑡+1 = 𝑤𝑡 − 𝛼
�̂�𝑡

√𝑣�̂�+𝜖
 (18)

where α is the learning rate, �̂�𝑡 and 𝑣𝑡 are the bias-corrected first and second-moment

estimates of the gradient, and ϵ is a small constant to prevent division by zero. The loss function

used was categorical cross-entropy with label smoothing. For each class, the smoothed label

𝑦smooth was calculated as follows:

12 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

𝑦smooth = 𝑦 × (1 − 𝛼) +
𝛼

𝐶
 (19)

where y was the original label, α is the smoothing factor, and N is the number of classes.

The loss L was then calculated by incorporating label smoothing to adjust the error calculation

during training, leading to more stable and effective learning, and was calculated as follows:

𝐿 = −∑  𝐶
𝑖=1 𝑦smooth,𝑖log(𝑝𝑖) (20)

where pi is the predicted probability for class i. This approach reduced overconfidence

in predictions, making training more stable. Callback mechanisms—specifically model

checkpoint, earlyStopping, and ReduceLROnPlateau—were configured to reduce

overconfidence. These model checkpoints monitored the validation loss and saved the model

whenever an epoch achieved a new minimum validation loss, and was defined as:

Save Model: {
 Save if val _lossnew < val _loss best

 Update val _loss best = val _loss new
 (21)

EarlyStopping monitored the validation loss and halted training when no improvement

was observed for a specified number of epochs, helping to prevent overfitting, which was

calculated as.

Stop Training: {
 if val_loss > val_ loss𝑡−1 for 𝑝 epochs

 Restore Best Weights
 (22)

Reduce Learning Rate on Plateau was used when the validation loss remained

unchanged for three consecutive epochs. The learning rate was halved. This adjustment

encouraged the Model to converge more precisely by allowing for finer weight updates,

facilitating better optimization in the later stages of training, and was calculated as follows:

Update Learning Rate: {
 if val _loss𝑡 ≥ val _loss 𝑡−1
 then 𝜂𝑡 = 𝜂𝑡−1 ⋅ 𝑓, where 𝑓 < 1

 (23)

The model was trained over 24 epochs. Where, 𝐿train and 𝐿𝑣𝑎𝑙 represented training and

validation losses, respectively, and 𝐴train and 𝐴Val represented training and validation

accuracy. Performance was evaluated per epoch to track improvements and avoid overfitting

by observing the trends and was defined as:

ISSN 2799-1601 (Print) 2799-161X (Online) | 13

𝐿train , 𝐿Val , 𝐴train, and 𝐴Val (24)

The final model was evaluated on the validation dataset using accuracy, precision,

recall, and F1-score metrics. To align the true labels, we represented them as:

𝑌true = ∑  𝑁
𝑖=1 𝑌1

𝑖 (25)

N was the number of batches in the validation dataset, and Y1 represented the one-hot

encoded labels. Predictions were generated on the validation dataset to further analyze the

model's accuracy. The model output probabilities for each class were converted to class

predictions using the argmax function. This yielded the predicted class. 𝑦pred_class for each

sample and was computed as follows:

𝑦pred_class = argmax(𝑦pred , axis = 1) (26)

True labels, 𝑦true were similarly obtained by converting one-hot encoded labels from

the validation dataset to class indices and were calculated as shown:

𝑦true = argmax(𝑦labels , axis = 1) (27)

This process allowed for a direct comparison between the predicted and true class

labels, facilitating the evaluation of the Model performance. With both 𝑦pred_class and

𝑦true aligned, it became possible to calculate additional metrics.

4. Results and Discussions

4.1 Dataset Description

The study combined the Kaggle dataset (Saleem et al., 2020) and the FieldPlant datasets

to create a comprehensive resource named the DEMF dataset. The Kaggle dataset, with 38

distinct classes and 60,343 images, provided a globally diverse and well-structured resource

ideal for training and validating the models. The FieldPlant dataset, developed in this study,

contributed 25,775 annotated images of plant leaves, primarily collected from farms in central

Kenya. Data augmentation techniques were applied to classes with fewer images to address

imbalances and strengthen underrepresented classes. Augmented images were physically

generated and stored in their respective directories, increasing the dataset's diversity and

14 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

ensuring a more balanced representation across all classes. The final dataset, as shown in table

1, comprised 22 crop types, 76 individual classes, and 99,551 images, divided into 79,601

training images and 19,950 validation images.

Table 1

 Dataset distribution

Crop Type Total Images Training Images Validation Images

Apple 4,651 3,719 932

Banana 4,008 3,204 804

Beans 8,096 6,475 1,621

Blueberry 1,502 1,201 301

Cassava 4,894 3,914 980

Cherry 2,054 1,642 412

Corn 4,358 3,484 874

Grape 4,641 3,711 930

Maize 1,002 801 201

Maize-leaf 1,239 991 248

Maize 4,985 3,986 999

Orange 5,507 4,405 1,102

Peach 3,299 2,638 661

Pepper 2,480 1,983 497

Potatoes 3,006 2,403 603

Raspberry 1,002 801 201

Rice 5,010 4,005 1,005

Squash 1,835 1,468 367

Strawberry 2,111 1,688 423

Sugarcane 5,010 4,005 1,005

Sunflower 4,008 3,204 804

Tea 6,012 4,806 1,206

Tomatoes 18,841 15,067 3,774

Total 99,551 79,601 19,950

4.2 Experimental Parameters and Environment

 Table 2 outlines the experimental setup, where data was stored and accessed via Google

Drive. The dataset was organized for efficient preprocessing and stratified splitting into

training and validation sets. The images were resized to a fixed dimension of 224×224,

ISSN 2799-1601 (Print) 2799-161X (Online) | 15

normalized, and prepared for dual inputs required by the MobileNetV2 and EfficientNetV2

branches. Data augmentation and batching were performed to enhance model robustness, with

a batch size 16 ensuring manageable computational loads. Key parameters, such as categorical

labels and class names, were extracted and processed to ensure compatibility with the

classification pipeline. The Model architecture combined outputs from MobileNetV2 and

EfficientNetV2 through concatenation, followed by dense layers with ReLU activation, batch

normalization, and dropout for regularization. The model was compiled with the Adam

optimizer and a learning rate of 1×10−5, using categorical cross-entropy loss and label

smoothing to improve classification performance. Multiple callbacks were integrated for

checkpointing, early stopping, and adaptive learning rate reduction, optimizing the training

process. The pipeline concluded with evaluation metrics such as validation accuracy,

classification reports, confusion matrices, and ROC-AUC curves to assess model performance

comprehensively. The experiments were conducted on an NVIDIA RTX 3090 GPU, providing

reliable and efficient performance. The setup included a virtualized Intel Xeon CPU with

access to virtualized GPUs (NVIDIA T4, Tesla P100, K80) and an operating system based on

Linux (Ubuntu). Python was the primary language, supported by frameworks such as

TensorFlow, PyTorch, Keras, and OpenCV.

Table 2

Hyperparameter Configurations

Hyperparameter Value

Image size 224 × 224

Image channels 3

Batch size 16

Number of MobileNetV2 layers Feature extraction only

Number of EfficientNetV2B0 layers Feature extraction only

Hidden dimension 256

Dropout rate 0.3

Number of epochs 17

Learning rate 1e-5

Optimizer Adam

Loss function Categorical Cross entropy (label smoothing = 0.1)

Callbacks EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

16 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

4.3 Evaluation Approach

A comprehensive set of metrics was chosen to evaluate the proposed model and assess

its predictive accuracy. Accuracy measured the correctly classified instances (positive and

negative) from the dataset. This metric reflected the model overall effectiveness across all

disease categories and was computed as follows:

Accuracy =
TP+TN

TP+FP+TN+FN
 (28)

TP, TN, FP, and FN represent true positives, true negatives, false positives, and false

negatives, respectively. Precision is essential for reducing false positives, a critical factor in

real-time crop disease detection, and was as calculated as:

Precision =
TP

TP+FP
 (29)

Recall, also known as sensitivity, measures the proportion of positives the model

successfully identifies. This metric is crucial in disease detection as it minimizes false

negatives, ensuring that diseased plants are not overlooked. and was calculated as follows:

Recall =
TP

TP+FN
 (30)

F1-score combines precision and recall into a single metric, using the harmonic mean

to balance both. The F1 score is especially valuable when false positives and negatives carry

significant implications and was calculated as follows:

F1-score = 2 ×
 Precision × Recall

 Precision + Recall
 (31)

The ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) measures

the Model effectiveness in distinguishing between classes by examining the relationship

between true positive and false positive rates. AUC values closer to 1.0 indicate stronger

discriminatory power, critical in distinguishing subtle differences between healthy and

diseased samples. The AUC is typically calculated from the area under the ROC curve.

ISSN 2799-1601 (Print) 2799-161X (Online) | 17

4.4 Classification Results of the Proposed Model

The Model training and validation results, as shown in table 3, demonstrate a consistent

improvement in performance across 17 epochs. Training accuracy increased significantly from

61.31% in Epoch 1 to 99.52% in Epoch 17, while validation accuracy improved from 89.56%

to 98.63%. Similarly, training loss decreased from 2.1238 to 0.8382, and validation loss

dropped from 1.1773 to 0.8368, indicating the model ability to minimize errors effectively.

The consistent learning rate of 0.00001 throughout the training process contributed to these

steady improvements. With a total training time of 23h 37m 24s, the results highlighted the

model's robustness and generalization capability, ensuring no signs of overfitting.

Table 3

Training and validation performance metrics analysis

Epoch Loss Accuracy Validation Loss Validation Accuracy Learning Rate Time (s/step)

1 2.1238 0.6131 1.1773 0.8956 0.00001 5066

2 1.2297 0.8815 1.0571 0.9489 0.00001 5009

3 1.0932 0.9302 0.9983 0.9637 0.00001 4997

4 1.0306 0.9506 0.9615 0.9695 0.00001 4996

5 0.9886 0.9630 0.9462 0.9754 0.00001 4997

6 0.9581 0.9718 0.9218 0.9794 0.00001 4995

7 0.9347 0.9785 0.9061 0.9806 0.00001 5004

8 0.9171 0.9823 0.8912 0.9827 0.00001 5007

9 0.9030 0.9851 0.8836 0.9831 0.00001 4989

10 0.8899 0.9876 0.8763 0.9837 0.00001 4998

11 0.8783 0.9903 0.8697 0.9837 0.00001 4994

12 0.8711 0.9915 0.8648 0.9845 0.00001 4995

13 0.8626 0.9927 0.8556 0.9856 0.00001 5004

14 0.8559 0.9933 0.8503 0.9852 0.00001 4999

15 0.8496 0.9942 0.8472 0.9855 0.00001 4999

16 0.8443 0.9943 0.8453 0.9855 0.00001 4995

17 0.8382 0.9952 0.8368 0.9863 0.00001 5000

Figure 4 illustrates the progressive improvement in training and validation accuracy

across 17 epochs, showcasing the model's enhanced performance and generalization. On the

other hand, figure 5 depicts the steady decline in training and validation loss, highlighting the

model's effective error minimization over time.

18 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Figure 4

Training and validation accuracy

Figure 5

Training and validation loss

Tables 4 and 5 showcase the classification outcomes for all 76 crop disease categories,

thoroughly assessing the Model performance across a broad spectrum of crop diseases.

ISSN 2799-1601 (Print) 2799-161X (Online) | 19

Table 4

Classification performance for crop disease classes (0 To 40)

Class Name Precision Recall F1-Score Support

Apple___Apple_scab 1.00 0.99 1.00 200

Apple___Black_rot 1.00 1.00 1.00 200

Apple___Cedar_apple_rust 1.00 1.00 1.00 200

Apple___healthy 1.00 1.00 1.00 329

Banana_cordana 1.00 1.00 1.00 200

Banana_healthy 0.99 1.00 1.00 200

Banana_pestalotiopsis 0.99 0.99 0.99 200

Banana_sigatoka 1.00 0.99 1.00 200

Bean_angular_leaf_spot 1.00 0.98 0.98 201

Beans_healthy 1.00 0.99 1.00 200

Blueberry___healthy 1.00 1.00 1.00 301

Cassava_brown_spot 1.00 1.00 1.00 296

Cassava_green_mite 0.97 0.95 0.96 203

Cassava_healthy 0.98 0.99 0.98 239

Cassava_mosaic 0.97 0.98 0.97 241

Cherry___Powdery_mildew 1.00 1.00 1.00 211

Cherry___healthy 1.00 0.99 1.00 200

Corn___Cercospora_leaf_spot Gray_leaf_spot 0.97 0.96 0.96 201

Corn___Common_rust 1.00 1.00 1.00 239

Corn___Northern_Leaf_Blight 0.95 0.97 0.96 200

Corn___healthy 1.00 0.99 0.99 233

Grape___Black_rot 0.99 1.00 1.00 236

Grape___Esca_(Black_Measles) 1.00 0.99 1.00 277

Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1.00 1.00 1.00 215

Grape___healthy 1.00 1.00 1.00 200

Maize _grasshoper 0.99 0.98 0.99 200

Maize-leaf_spot 0.75 0.67 0.71 248

Maize_fall_Armyworm 0.95 1.00 0.97 201

Maize_healthy 0.91 0.99 0.95 199

Maize_leaf_beetle 0.97 0.97 0.97 199

Maize_leaf_blight 0.72 0.71 0.72 200

Maize_streak_virus 0.91 0.89 0.90 199

Orange___Haunglongbing_(Citrus_greening) 1.00 1.00 1.00 1102

Peach___Bacterial_spot 1.00 1.00 1.00 460

Peach___healthy 1.00 1.00 1.00 200

Pepper, _bell___Bacterial_spot 1.00 0.99 1.00 200

Pepper,_bell___healthy 1.00 1.00 1.00 296

Potato___Early_blight 1.00 1.00 1.00 200

Potato___Late_blight 1.00 0.99 0.99 201

20 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Table 5

Classification performance for crop disease classes (41 to 76)

Class Name Precision Recall F1-Score Support

Potato___healthy 1.00 1.00 1.00 200

Raspberry___healthy 1.00 1.00 1.00 201

Rice_bacterial_leaf_blight 1.00 1.00 1.00 200

Rice_brown_spot 0.99 0.98 0.98 201

Rice_healthy 1.00 1.00 1.00 201

Rice_leaf_blast 0.98 0.99 0.99 200

Rice_narrow_brown_spot 1.00 1.00 1.00 200

Soybean___healthy 1.00 1.00 1.00 1018

Squash___Powdery_mildew 1.00 1.00 1.00 367

Strawberry___Leaf_scorch 1.00 1.00 1.00 222

Strawberry___healthy 1.00 1.00 1.00 200

Sugarcane_Healthy 0.97 0.99 0.98 200

Sugarcane_Mosaic 0.97 0.98 0.97 201

Sugarcane_RedRot 0.99 1.00 0.99 200

Sugarcane_Rust 1.00 0.96 0.98 200

Sugarcane_Yellow 0.99 0.99 0.99 200

Sunflower_Downy mildew 0.99 0.99 0.99 200

Sunflower_Fresh Leaf 1.00 1.00 1.00 200

Sunflower_Gray mold 1.00 1.00 1.00 201

Sunflower_Leaf scars 0.99 0.99 0.99 200

Tea_Anthracnose 1.00 1.00 1.00 201

Tea_algal leaf 1.00 1.00 1.00 200

Tea_bird eye spot 1.00 1.00 1.00 201

Tea_brown blight 1.00 1.00 1.00 200

Tea_healthy 1.00 1.00 1.00 200

Tea_red leaf spot 1.00 1.00 1.00 200

Tomato___Bacterial_spot 0.99 1.00 1.00 426

Tomato___Early_blight 0.99 0.96 0.97 201

Tomato___Late_blight 0.99 0.99 0.99 382

Tomato___Leaf_Mold 1.00 1.00 1.00 200

Tomato___Septoria_leaf_spot 1.00 0.99 1.00 354

Tomato___Spider_mites Two-spotted_spider_mite 0.98 1.00 0.99 335

Tomato___Target_Spot 0.99 0.99 0.99 281

Tomato___Tomato_Yellow_Leaf_Curl_Virus 1.00 1.00 1.00 1072

Tomato___Tomato_mosaic_virus 1.00 1.00 1.00 200

Tomato___healthy 1.00 1.00 1.00 318

bean_rust 0.97 1.00 0.98 201

The confusion matrices shown in figure 6 (a to f) illustrate the performance of the

disease detection task across all classes (ranging from class 0 to class 76). These matrices

display actual class labels on the X-axis and predicted labels on the Y-axis, providing insights

into the Model classification accuracy for each class. Figure 12 illustrates the ROC curve,

ISSN 2799-1601 (Print) 2799-161X (Online) | 21

which showcases the model performance across different classification thresholds. The AUC

score in the figure reflects the Model's ability to effectively differentiate between positive and

negative classes, with higher AUC values indicating stronger predictive power and better

overall performance.

Figure 6

Confusion matric for classes 0-10

Confusion matric for classes 10-20

22 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Confusion matric for classes 30-40

Confusion matric for classes 50-40

ISSN 2799-1601 (Print) 2799-161X (Online) | 23

Confusion matric for classes 60-70

Confusion matric for classes 60-76

24 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Figure 7

ROC- AUC Scores

4.5. Ablation Studies

Table 6 displays the analysis of how data augmentation techniques influence the model

performance. Each transformation aimed to introduce variability, simulating real-world

conditions. The rotation randomly altered the leaf's orientation, while flipping helped the

model generalize across orientations. Brightness adjustment simulated lighting conditions, and

zoom introduced scale and focus variation. These augmentations enhanced the model

generalizability and performance in diverse environmental conditions.

ISSN 2799-1601 (Print) 2799-161X (Online) | 25

Table 6

Augmentation techniques

Transformation Type Range/Details

Rotation 0, 90, 180, or 270 degrees

Flipping Horizontal flip and vertical flip

Brightness Adjustment Between 0.7 (dark) and 1.3 (bright)

Zoom Cropped a random portion and resized to 224x224 pixels

The resulting sample augmented images in figure 8 demonstrate the transformations

applied during preprocessing. The augmentation techniques enhanced model training by

generating a diverse dataset while preserving the distinguishing features of crop diseases.

Figure 8

Sample augmented images

On the unseen data, 249 images were processed, with 239 correctly classified, resulting

in an accuracy of 95.98%. Only 10 images (4.02%) were misclassified, further supporting the

model overall strong performance. The model demonstrated its ability to accurately classify

plant diseases, even when the confidence scores were low for a few classes lacking dominant

features. This suggested that the proposed model, as shown in figure 9, generally distinguished

between healthy and diseased plants.

The proposed model capacity to deliver high-confidence predictions for diseases with

strong visual cues, alongside moderate performance for others, highlights its practical utility

for real-world deployment. The model proved its ability to classify plant diseases effectively

in real-world scenarios, as demonstrated by the sample results in figure 10. When applied to

field data, these samples illustrate the model performance, showcasing its ability to provide

accurate predictions across various plant diseases with confidence scores.

26 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Figure 9

Classification summary on unseen images

Figure 10

Random classes actual vs. predicted classification

4.6 Comparison with Other Models

The proposed hybrid model consistently outperformed existing crop disease detection

models, achieving high accuracy rates that surpass traditional CNN-based and ViT-based

approaches. As summarized in table 7, several models were tested, including MobileNetV2,

EfficientNetB0, EfficientNetV2, DenseNet121, DenseNet50, ResNet152, AlexNet, and

Custom CNN, all on the same dataset for comparison.

ISSN 2799-1601 (Print) 2799-161X (Online) | 27

Table 7

Comparative performance of all models

Model Training Accuracy Validation Accuracy Training Loss Validation Loss

Proposed Model 99.61% 98.63% 0.0331 0.8458

MobileNetV2 98.92% 98.21% 0.0507 0.8663

EfficientNetB0 97.65% 91.02% 0.0811 1.2424

EfficientNetV2 99.08% 97.95% 0.0702 1.0291

DenseNet121 98.80% 97.75% 0.0675 1.0733

DenseNet50 98.75% 96.11% 0.0706 1.0975

ResNet152 98.74% 96.45% 0.0852 1.2092

AlexNet 97.88% 93.50% 0.1189 1.5391

Custom CNN 92.10% 61.84% 0.2750 2.5675

As shown in table 8, the final trained model sizes varied significantly, with AlexNet

being the largest at 551,564 KB due to its complex architecture. ResNet followed with 100,500

KB, while the DEMF Model was slightly smaller at 104,625 KB, optimized for edge

computing tasks. MobileNetV2 was the smallest at 30,908 KB, designed for lightweight

operations. EfficientNetB0 and EfficientNetV2 were compact, with sizes around 74,000 KB,

offering a balance of performance and efficiency. DenseNet121 was around 97,697 KB, and

DenseNet50 was more compact at 42,015 KB, focusing on feature reuse. The Custom CNN

was the smallest Model at 8,272 KB, ideal for resource-constrained environments.

Table 8

Model size comparisons

Model Size (KB) Size (MB)

Proposed Model 104,625 102.6

MobileNetV2 30,908 30.2

EfficientNetB0 74,256 72.5

EfficientNetV2 73,983 72.3

DenseNet121 97,697 95.5

DenseNet50 42,015 41.1

ResNet 100,500 98.1

AlexNet 551,564 539.5

Custom CNN 8,272 8.1

28 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

4.7 Statistical Validation

Statistical testing assessed performance differences across model variations using a

separate dataset. As shown in table 9, the proposed model outperformed others across all

evaluation metrics. The model achieved the highest performance, with a 95.1% Bayesian

superiority probability over ShuffleNet, which was second, confirming its suitability for

deployment.

Table 9

Statistical comparison of the models

Model Accuracy Precision Recall F1-score Kappa AUC Rank

Proposed Model 0.990 0.993421 0.990085 0.990365 0.989855 0.999997 1st

ShuffleNet 0.982 0.983906 0.982153 0.980596 0.981740 0.999991 2nd

EfficientNetV2 0.972 0.976770 0.973841 0.973155 0.971595 0.999935 3rd

VGG-16 0.972 0.976770 0.973841 0.973155 0.971595 0.999935 3rd

DenseNet 0.956 0.966270 0.962312 0.958693 0.955368 0.999863 4th

AlexNet 0.942 0.953236 0.947609 0.942789 0.941164 0.998949 5th

DenseNet50 0.884 0.907292 0.889661 0.883751 0.882337 0.998823 6th

Cohen’s Kappa (κ) measures the level of agreement between two raters (or classifiers)

while considering the possibility of agreement occurring by chance. Unlike simple accuracy,

Kappa accounts for random agreement, making it a more robust metric for classification

performance assessment. It was calculated as shown:

𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
 (32)

Where:

𝑝𝑜 = Observed agreement (i.e., accuracy)

𝑝𝑒 =Expected agreement due to chance

A κ value close to 1 indicates near-perfect agreement, whereas a value close to 0

suggests agreement is no better than random chance. Our experiment calculated Cohen’s

Kappa to be 0.99, suggesting a strong agreement between the model predictions and ground

truth labels.

McNemar’s Test was also used to compare the top two classification models from all

our test models by analyzing the differences in their misclassification rates. It is particularly

ISSN 2799-1601 (Print) 2799-161X (Online) | 29

useful for paired data, such as models evaluated on the same dataset, and was represented as

shown.

𝜒2 =
(𝑏−𝑐)2

𝑏+𝑐
 (33)

Where:

𝑏 = Instances misclassified by Model A but correctly classified by Model B

 𝐶= Instances misclassified by Model B but correctly classified by Model A

A low p-value (< 0.05) suggests a significant difference in model performance. The

test yielded a 𝑝-value of 0.03, indicating a statistically significant difference between the

models.

The permutation test was used to determine whether the accuracy difference between

the top two models were statistically significant. It works by shuffling the labels multiple times

and computing the difference in accuracy each time, which was calculated as follows:

𝑝 =
 number of times shuffled difference ≥ observed difference

 total permutations
 (34)

With 1000 permutations, our computed 𝑝-value was 0.04, indicating that the difference

in model performance is statistically significant.

The confidence interval provides a range within which the true difference in accuracy

between models lies, with a specified confidence level (typically 95%), and it was calculated

as follows:

(�̂� − 1.96 × 𝑆𝐸, �̂� + 1.96 × 𝑆𝐸) (35)

Where,

�̂� = Observed difference in accuracy.

𝑆𝐸=Standard error of the difference.

Confidence variance was applied to quantify the spread of model confidence scores,

indicating reliability. It was calculated as follows:

Variance =
1

𝑁
∑  𝑁
𝑖=1 (𝑥𝑖 − 𝜇)2 (36)

Where:

𝑥𝑖 =Individual confidence scores

𝜇 = Mean confidence score

30 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

𝑁= Total predictions

Table 10 shows the confidence variance for different models, where lower values

indicate more stable confidence predictions. MoViT had the lowest confidence variance,

suggesting it was the most consistent in its confidence estimates, while DenseNet50 had the

highest variance, implying greater fluctuations.

Table 10

Confidence variance by model

Model Confidence Variance

DenseNet50 0.000032

AlexNet 0.000027

DenseNet 0.000022

EfficientNetV2 0.000017

VGG_16 0.000015

ShuffleNet 0.000014

Proposed Model 0.000012

Confidence score distributions were also calculated, as shown in figure 11. This metric

is essential for understanding the reliability of model predictions. The results indicate the

proposed model (DEMF) exhibits superior confidence score distributions compared to other

models.

Figure 11

Confidence scores distributions across models

ISSN 2799-1601 (Print) 2799-161X (Online) | 31

Levene’s test determines whether multiple models have equal variance in their

confidence scores. The results indicate that the proposed model exhibited significantly lower

variance than others. With its lightweight design and real-time efficiency, the proposed model

emerged as the most stable in variance comparisons. This test was calculated as follows:

𝑊 =
(𝑁−𝑘)

(𝑘−1)
×

∑  𝑘
𝑖=1𝑁𝑖(𝑍𝑖.−𝑍..)

2

∑  𝑘
𝑖=1 ∑  

𝑁𝑖
𝑗=1

(𝑍𝑖𝑗−𝑍𝑖.)
2 (37)

Where:

𝑁= Total samples

𝑘= Number of models

𝑍𝑖𝑗= Absolute deviations from the median

A low 𝑝-value (< 0.05), as shown in table 11, indicates significant variance differences

among models.

Table 11

Pairwise variance comparisons (Levene's Test)

Comparison p-value Significant (0.05) Significant (Adj.)

Proposed Model vs DenseNet50 1.674901e-52 Yes True

Proposed Model vs AlexNet 1.591150e-20 Yes True

Proposed Model vs DenseNet 1.518670e-11 Yes True

Proposed Model vs ShuffleNet 3.325640e-12 Yes True

Proposed Model vs EfficientNetV2 1.465245e-06 Yes True

Proposed Model vs VGG_16 1.465245e-06 Yes True

ShuffleNet vs DenseNet50 1.532226e-52 Yes True

ShuffleNet vs AlexNet 3.382618e-21 Yes True

ShuffleNet vs DenseNet 3.325640e-12 Yes True

ShuffleNet vs EfficientNetV2 2.190516e-02 Yes False

ShuffleNet vs VGG_16 2.190516e-02 Yes False

EfficientNetV2 vs DenseNet50 4.946421e-37 Yes True

EfficientNetV2 vs AlexNet 4.130888e-13 Yes True

EfficientNetV2 vs DenseNet 1.465245e-06 Yes True

EfficientNetV2 vs VGG_16 6.756542e-01 No False

VGG_16 vs DenseNet50 4.946421e-37 Yes True

VGG_16 vs AlexNet 4.130888e-13 Yes True

VGG_16 vs DenseNet 1.465245e-06 Yes True

DenseNet vs DenseNet50 2.039134e-12 Yes True

DenseNet vs AlexNet 2.190516e-02 Yes False

AlexNet vs DenseNet50 4.111105e-06 Yes True

32 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

The Kruskal-Wallis test evaluated significant differences in confidence scores among

multiple models. The test resulted in H = 614.90, p = 1.4237e-129, indicating a significant

difference in model performance. Given the extremely low p-value, we can confidently reject

the null hypothesis, confirming that at least one model exhibited a statistically different

confidence score compared to the others.

4.8 Comparative Analysis with Existing Hybrid Models

Table 12 presents a comparative analysis of classification accuracy across various

studies, demonstrating the superior performance of the proposed model. The model achieved

the highest accuracy of 98.63%, showcasing its effectiveness in classification due to advanced

architectural refinements and optimized feature extraction.

Table 12

Comparing with existing hybrid multi multi-classification models

Studies Classification Accuracy

Parez et al. (2023) 98.00%%

Zhu et al. (2023) 97.50%%

Shah et al. (2024) 90.00%

Barman et al. (2024) 90.99%

Touvron et al. (2021) 85.02%

Proposed model 98.63%

Figure 11

App screenshots

ISSN 2799-1601 (Print) 2799-161X (Online) | 33

Mobile App integration. We implemented a mobile app powered by the proposed

model for real-time disease detection across 22 crops in low-resource environments. As shown

in the sample screenshots in figure 11, the app enabled farmers to capture leaf images using

their phone's camera for quick and reliable disease classification.

Ethical and Data Privacy Considerations. The app focuses exclusively on leaf disease

diagnosis while ensuring ethical AI use and compliance with Google Play Store guidelines.

Users grant camera and gallery access only when capturing leaf images, with in-app

disclaimers clarifying that no personal data or other plant parts are processed. To enhance

accuracy, bias audits assess performance across diverse leaf types, and community-driven

updates allow farmers to flag misdiagnosed samples for prioritized retraining. Additionally,

the app features an expert module, enabling real agronomists to provide insights and verify

diagnoses for improved reliability. For ambiguous cases, confidence disclaimers encourage

expert consultation, and an error-reporting mechanism ensures that misclassified samples are

reviewed, enhancing model fairness and accuracy.

5. Conclusion

The proposed model achieved state-of-the-art accuracy (99.52% training, 98.63%

validation) while maintaining computational efficiency (30.4 MB post-quantization).

Integrating EfficientNetV2’s multi-scale feature extraction with MobileNetV2’s lightweight

architecture optimizes precision and deployability—crucial for low-resource environments.

Despite its compact size and 0.094s inference latency, real-world deployment presents

additional challenges beyond computational constraints. Preliminary tests on low-end

smartphones (Android 8.0, ≤2GB RAM) showed a 3% drop in inference speed for high-

resolution images, highlighting the need for optimized image pre-processing techniques.

Expanding the dataset with a broader range of images is critical for improving model

generalization. Testing on an external dataset of 1,200 images underscored the importance of

incorporating underrepresented species and real-world variations such as occlusions and

uneven lighting. Increasing data diversity will enhance model robustness and practical

applicability. Additionally, federated learning partnerships with local cooperatives should be

encouraged to facilitate continuous model adaptation. While optimized for individual use,

scaling the model for large agricultural systems requires edge-to-cloud workflows, as parallel

34 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

inference across 1,000+ devices (e.g., drone fleets) demands dynamic load balancing to prevent

server bottlenecks.

The model exhibited stable predictions, with the lowest confidence variance (0.000012)

among benchmarks. A Kruskal-Wallis test confirmed significant performance differences

across models (H = 614.90, p = 1.4237e−129), with Bayesian analysis indicating a 100%

superiority probability over DenseNet50. Furthermore, a 96% accuracy on 249 unseen field

images reinforces its reliability in diverse settings. Future work should focus on adaptive

quantization for broader hardware compatibility, targeting ultra-low-power devices (<1GB

RAM). Additionally, federated learning pipelines should be explored to integrate region-

specific data without centralized collection. Including multimodal inputs, such as soil moisture

and weather trends via lightweight sensor fusion, will further enhance predictive capabilities.

Finally, expanding uncertainty-aware interfaces, such as confidence-based agrochemical

dosage recommendations, will improve real-world decision support for farmers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was not supported by any funding.

ORCID

Thomas K. Njoroge- https://orcid.org/0009-0000-2147-9848

https://orcid.org/0009-0000-2147-9848

ISSN 2799-1601 (Print) 2799-161X (Online) | 35

References

Abbasi, R., Martinez, P., & Ahmad, R. (2023). Automated visual identification of foliage

chlorosis in lettuce grown in aquaponic systems. Agriculture (Switzerland), 13(3).

https://doi.org/10.3390/agriculture13030615

Abdu, A. M., Mokji, M. M., & Sheikh, U. U. (2020a). Machine learning for plant disease

detection: An investigative comparison between support vector machine and deep

learning. IAES International Journal of Artificial Intelligence, 9(4), 670–683.

https://doi.org/10.11591/ijai.v9.i4.pp670-683

Abdu, A. M., Mokji, M. M., & Sheikh, U. U. (2020b). Machine learning for plant disease

detection: An investigative comparison between support vector machine and deep

learning. IAES International Journal of Artificial Intelligence, 9(4), 670–683.

https://doi.org/10.11591/ijai.v9.i4.pp670-683

Amin, H., Darwish, A., Hassanien, A. E., & Soliman, M. (2022). End-to-end deep learning

model for corn leaf disease classification. IEEE Access, 10, 31103–31115.

https://doi.org/10.1109/ACCESS.2022.3159678

Bi, C., Xu, S., Hu, N., Zhang, S., Zhu, Z., & Yu, H. (2023). Identification method of corn leaf

disease based on improved Mobilenetv3 model. Agronomy, 13(2).

https://doi.org/10.3390/agronomy13020300

Chao, X., Sun, G., Zhao, H., Li, M., & He, D. (2020). Identification of apple tree leaf diseases

based on deep learning models. Symmetry, 12(7).

https://doi.org/10.3390/sym12071065

Dong, K., Zhou, C., Ruan, Y., & Li, Y. (2020). MobileNetV2 model for image classification.

Proceedings - 2020 2nd International Conference on Information Technology and

Computer Application, ITCA 2020, 476–480.

https://doi.org/10.1109/ITCA52113.2020.00106

Kaleem, M. K., Purohit, N., Azezew, K., & Asemie, S. (2021). A modern approach for

detection of leaf diseases using image processing and ML Based SVM classifier.

Turkish Journal of Computer and Mathematics Education, 12(13).

Kemi Afolabi-Yusuf, G., Arjun, G., A, O. B., O, O. Y., K, A. G., Muhammed, B. F., & M, A.

A. (2022). Computer vision-based plant disease identification system: A review. AAN

Journal of Sciences, Engineering & Technology, 1(1), 59-78.

https://doi.org/10.3390/agriculture13030615
https://doi.org/10.11591/ijai.v9.i4.pp670-683
https://doi.org/10.11591/ijai.v9.i4.pp670-683
https://doi.org/10.1109/ACCESS.2022.3159678
https://doi.org/10.3390/agronomy13020300
https://doi.org/10.3390/sym12071065
https://doi.org/10.1109/ITCA52113.2020.00106

36 | International Journal of Science, Technology, Engineering and Mathematics, Volume 5 Issue 2

Liu, L., Qiao, S., Chang, J., Ding, W., Xu, C., Gu, J., Sun, T., & Qiao, H. (2024). A multi-scale

feature fusion neural network for multi-class disease classification on the maize leaf

images. Heliyon, 10(7). https://doi.org/10.1016/j.heliyon.2024.e28264

Liu, Y., Wei, C., Yoon, S. C., Ni, X., Wang, W., Liu, Y., Wang, D., Wang, X., & Guo, X.

(2024). Development of multimodal fusion technology for tomato maturity assessment.

Sensors, 24(8). https://doi.org/10.3390/s24082467

Mi, Z., Zhang, X., Su, J., Han, D., & Su, B. (2020). Wheat stripe rust grading by deep learning

with attention mechanism and images from mobile devices. Frontiers in Plant Science,

11. https://doi.org/10.3389/fpls.2020.558126

Mohammed, L., & Yusoff, Y. (2023). Detection and classification of plant leaf diseases using

digital image processing methods: A review. ASEAN Engineering Journal, 13(1), 1–9.

https://doi.org/10.11113/aej.V13.17460

Mousavi, S., & Farahani, G. (2022). A novel enhanced VGG16 model to tackle grapevine

leaves diseases with automatic method. IEEE Access, 10, 111564–111578.

https://doi.org/10.1109/ACCESS.2022.3215639

Nguyen, H. T., Luong, H. H., Huynh, L. B., Le, B. Q. H., Doan, N. H., & Le, D. T. D. (2023).

An improved MobileNet for disease detection on tomato leaves. Advances in

Technology Innovation, 8(3), 192–209. https://doi.org/10.46604/aiti.2023.11568

Önler, E. (2023). Feature fusion-based artificial neural network model for disease detection of

bean leaves. Electronic Research Archive, 31(5), 2409–2427.

https://doi.org/10.3934/era.2023122

Rajeena P. P, F., S. U, A., Moustafa, M. A., & Ali, M. A. S. (2023). Detecting plant disease in

corn leaf using EfficientNet architecture—An analytical approach. Electronics

(Switzerland), 12(8). https://doi.org/10.3390/electronics12081938

Sala, F., Popescu, C. A., Herbei, M. V., & Rujescu, C. (2020). Model of color parameters

variation and correction to "Time-View" image acquisition effects in wheat crop.

Sustainability (Switzerland), 12(6). https://doi.org/10.3390/su12062470

Saleem, M. H., Potgieter, J., & Arif, K. M. (2020). Plant disease classification: A comparative

evaluation of convolutional neural networks and deep learning optimizers. Plants,

9(10), 1–17. https://doi.org/10.3390/plants9101319

https://doi.org/10.1016/j.heliyon.2024.e28264
https://doi.org/10.3390/s24082467
https://doi.org/10.3389/fpls.2020.558126
https://doi.org/10.11113/aej.V13.17460
https://doi.org/10.1109/ACCESS.2022.3215639
https://doi.org/10.46604/aiti.2023.11568
https://doi.org/10.3934/era.2023122
https://doi.org/10.3390/electronics12081938
https://doi.org/10.3390/su12062470
https://doi.org/10.3390/plants9101319

ISSN 2799-1601 (Print) 2799-161X (Online) | 37

Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy,

applications and research directions. SN Computer Science, 2(6).

https://doi.org/10.1007/s42979-021-00815-1

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural

networks based recognition of plant diseases by leaf image classification.

Computational Intelligence and Neuroscience. https://doi.org/10.1155/2016/3289801

Ulutaş, H., & Aslantaş, V. (2023). Design of efficient methods for the detection of tomato leaf

disease utilizing proposed ensemble CNN model. Electronics (Switzerland), 12(4).

https://doi.org/10.3390/electronics12040827

Vellaichamy, A. S., Swaminathan, A., Varun, C., & S, K. (2021). Multiple plant leaf disease

classification using Densenet-121 architecture. International Journal of Electrical

Engineering and Technology, 12(5). https://doi.org/10.34218/ijeet.12.5.2021.005

Zhao, Z., Alzubaidi, L., Zhang, J., Duan, Y., & Gu, Y. (2024). A comparison review of transfer

and self-supervised learning: Definitions, applications, advantages and limitations. In

Expert Systems with Applications, 242. https://doi.org/10.1016/j.eswa.2023.122807

Zheng, Y. Y., Kong, J. L., Jin, X. B., Wang, X. Y., Su, T. L., & Zuo, M. (2019). Cropdeep:

The crop vision dataset for deep-learning-based classification and detection in

precision agriculture. Sensors (Switzerland), 19(5). https://doi.org/10.3390/s19051058

https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1155/2016/3289801
https://doi.org/10.3390/electronics12040827
https://doi.org/10.34218/ijeet.12.5.2021.005
https://doi.org/10.1016/j.eswa.2023.122807
https://doi.org/10.3390/s19051058

