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Abstract 

This study presents an improved face recognition system tackling the Eigenface algorithm's 

limitations regarding lighting variance, class separability, and classification. The proposed method 

incorporates Weber Local Descriptor (WLD) for illumination normalization during training and 

recognition. Further improvements include Kernel Principal Component Analysis (KPCA) for non-

linear feature transformation, Linear Discriminant Analysis (LDA) to maximize class separability, 

and Ridge classification for noise-resistant recognition, replacing Euclidean distance. Testing on the 

extended Yale B dataset showed a significant accuracy increase from 5.63% (original Eigenface) to 

99.83% (enhanced Eigenface). Evaluation on a custom dataset simulating real-world conditions 

(varying light, expressions) yielded 100% accuracy across feature transformation, class separability, 

and classification. These results demonstrate the effectiveness of the integrated WLD, KPCA, LDA, 

and Ridge classification techniques in developing a robust and accurate face recognition system 

suitable for applications like attendance management. 
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1. Introduction 

The process of recognizing or verifying someone's identity using their face is known 

as face recognition. Although the terms face detection and face recognition are often used 

interchangeably, they refer to two different technologies. The primary difference is that the 

former simply detects the presence of a face, while the latter recognizes a person's face from a 

collection of known faces. Despite being distinct, both technologies are often used together in 

systems that require facial recognition through a camera. 

Face recognition has a wide range of real-world applications. It is commonly used in 

authentication, providing a secure and convenient way to unlock smartphones and tablets, as 

well as to verify user identities for secure transactions in the financial sector. It is also 

employed in attendance management systems, where it can accurately track and record 

attendance in schools, offices, and other organizations. Law enforcement and crime prevention 

agencies use face recognition to identify suspects and prevent crimes, aiding in investigations 

and enhancing public safety. These examples demonstrate the adaptability and value of face 

recognition technology in improving efficiency, safety, and user experience across various 

industries and applications. 

One common problem encountered in early face recognition algorithms was how to 

represent the human face in a way that captures the unique features identifying an individual. 

Early approaches used basic face models, such as extracting features from edge images and 

comparing simple distances and ratios between these features. However, some facial 

characteristics are not intuitive to human interpretation. Turk and Pentland (1991), building on 

the work of Sirovich and Kirby (1987), developed an algorithm known as the Eigenface 

Approach—or simply the Eigenface Algorithm—in face recognition. 

The Eigenface Algorithm was one of the first successful methods for real-time face 

recognition. The core idea is to represent a face using a small set of weights and standard 

features called eigenfaces. These weights differ for each individual. To recognize a new face, 

the algorithm calculates its weights and compares them to those of known individuals to 

determine whether the face is recognized or not, based on the closest match in weight patterns. 

To identify the eigenfaces (or the “face space”), Principal Component Analysis (PCA) is used. 

This method goes beyond our intuitive understanding of facial features by identifying the most 

distinctive characteristics that best describe individuals within a known population, rather than 

relying solely on familiar features like the eyes, nose, or mouth. 
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2. Literature Review 

2.1. The concept of the Eigenface algorithm 

The ability of human beings to recognize faces is remarkable. However, creating a 

computational model to recognize faces is quite difficult, primarily because faces are complex 

and multidimensional. The use of basic face models and feature descriptions, such as 

identifying features from an edge image and comparing simple distances and ratios, limited 

early attempts to enable computers to recognize faces. These attempts were based on the 

premise that a face is simply a combination of its individual features (Turk & Pentland, 1991). 

Sirovich and Kirby (1987) proposed a method for characterizing a face image by 

keeping only a small set of weights for each face in a population of face images, as well as a 

small collection of standard pictures known as eigenpictures. In principle, this set of weights 

will differ between faces, and rather than storing all the pixels in an image, a face image can 

be reconstructed using a weighted sum of all the eigenpictures. This essentially reduces the 

dimensions of the features. Turk and Pentland (1991) expanded on this idea, arguing that if a 

number of faces can be reconstructed by weighted sums of all the eigenpictures, then any 

particular face can be recognized by comparing the weights required to closely reconstruct 

them to the weights associated with known faces. This approach to face recognition is also 

known as the Eigenface Approach or Eigenface Algorithm. 

The Eigenface Algorithm can be divided into two components: training and 

recognition. During the training phase, gather a set of face images (the training set). These 

images are subjected to Principal Component Analysis (PCA) to calculate the eigenvectors or 

eigenfaces, leaving only the M eigenfaces with the highest eigenvalues. These M images define 

the face space in which all face images will be reconstructed. Finally, calculate the weights of 

each face by projecting it onto the “face space”. After initializing the system, the following 

steps are used for recognizing new faces. First, calculate the weights of the face image by 

projecting it into the "face space" or each of the eigenfaces calculated during the training phase. 

Then, check to see if the image is close enough to the "face space" to be considered a face. If 

it is a face, compare its weights to those of known faces and determine whether it is a known 

person or an unknown by finding the weight pattern of a known face that is closest to the 

weight pattern of the new face. 
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2.2. Limitations of the Algorithm 

Issues with lighting levels. The Eigenface algorithm, despite its effectiveness in facial 

recognition, faces several challenges. One significant issue is the algorithm's sensitivity to 

variations in lighting conditions, which can affect the accuracy of facial recognition systems 

(Javed Mehedi Shamrat et al., 2022; Annubaha et al., 2022). Additionally, the Eigenface 

algorithm can encounter difficulties when faced with environmental factors like varying light 

intensities and face rotations, leading to decreased accuracy in facial recognition (Fei et al., 

2018). Maharani Raharja et al. (2021) found that “if the light intensity on the face image object 

is above 1700 lux then the face image object can be recognized properly, but if the intensity 

ranges from 0 to 1700 lux then the face image is not recognized at all or is wrong in detecting 

faces due to lack of lighting.” Fahmy et. al (2003) also stated that “the quality of the acquired 

facial image, which in turn affects the recognition/matching rate, decreases significantly when 

the light direction is outside the range of 60 to 120 degrees with 90 degrees as the exact frontal 

light angle. This is due to the fact that when the light is closer to either the right or left profile 

of the face, the luminance distribution across the face is unequal, which affects the feature 

detection”. Eigenfaces are sensitive to lighting variations as they rely on global intensity 

patterns. Under varying lighting conditions, the eigenfaces may not capture the necessary 

discriminative information, leading to reduced accuracy. (Dorbi & Joshi, 2023). 

Large datasets. The eigenface algorithm also struggles with large datasets. If the size 

of the dataset is large, it creates a huge covariance matrix that may not be computationally 

feasible, and might affect the performance of the algorithm in recognizing faces correctly 

(ElSayed et al., 2012). The computational requirements of these approaches are greatly related 

to the dimensionality of the original data and the number of training samples. When the face 

database becomes larger, the time for training and the memory requirement will significantly 

increase (Er et al., 2005). A feasible solution was made by dividing a large dataset into a bunch 

of small subsets that satisfied the assumption of conventional approaches (Park et al., 2017). 

Kekre et. al (2014) proposed a new approach of classification where two sets of eigenfaces are 

used, one for each gender. After a given test image is reconstructed with the Eigen coordinate 

systems of each gender, the lowest Mean Squared Error (MSE) between given image and 

reconstructed image, indicates the output class or gender for that image. 

Inefficient computation of eigenvectors and eigenvalues. The methods for visual 

learning that compute a space of eigenvectors by Principal Component Analysis (PCA) 
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traditionally require a batch computation step. Since this leads to potential problems when 

dealing with large sets of images, several incremental methods for the computation of the 

eigenvectors have been introduced. Another problem is that, in order to update the subspace of 

eigenvectors with another image, the whole decomposition must be recomputed from scratch 

(Artac et al., 2002). 

Incremental Principal Component Analysis (IPCA) is another kind of feature extraction 

algorithm that is used for reducing the dimensionality of input feature vectors. IPCA is 

recommended to be used in place of conventional PCA when the size of the dataset to be 

analyzed is too large to fit in memory (Rehman et al., 2020). Given that retraining data in a 

frequent manner and increasing training data is to be expected. Recomputing an already 

existing eigenvector in order to add training data into it would be inefficient and will consume 

more memory. A research by Hallgren and Northrop (2018) supports this by stating 

“Incremental algorithms, where a solution is updated for additional data examples, are often 

desirable” and “Incremental algorithms often have a lower memory footprint than their batch 

counterparts.” 

 

2.3. Weber Local Descriptor 

The Weber Local Descriptor (WLD) constitutes a robust local image descriptor. Its 

conceptual basis lies in Weber's Law, a principle in psychology positing that the just noticeable 

difference in a stimulus exhibits proportionality to the magnitude of the initial stimulus. WLD 

is engineered to extract locally significant patterns from an image (Jie Chen et al., 2010). 

WLD is robust to illumination changes and noise. The computation of differential 

excitation and orientation relies on ratios, which helps to mitigate the effects of both 

multiplicative noise and variations in brightness and contrast (Jie Chen et al., 2010). In contrast 

to SIFT, which is often computed over a larger neighborhood (e.g., 16x16), the Weber Local 

Descriptor (WLD) is typically computed over a smaller neighborhood (e.g., 3x3), thereby 

enabling the capture of more granular local details (Jie Chen et al., 2010). The Local Binary 

Pattern (LBP) exhibits computational simplicity and greater speed than WLD in certain aspects 

and demonstrates tolerance to monotonic variations in illumination (Dahmouni et al., 2024). 

However, LBP generally displays heightened sensitivity to noise and localized variations in 

lighting. Furthermore, it can generate feature vectors of potentially high dimensionality (Singh 

& Chhabra, 2018). While the Histogram of Oriented Gradients (HOG) excels at capturing 
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information pertaining to edges and shapes, demonstrating efficacy in facial expression 

recognition and face recognition, it can exhibit higher computational demands compared to 

WLD. Furthermore, the performance of HOG is notably contingent upon careful parameter 

tuning (Carcagnì et al., 2015). 

The application of the WLD resulted in a 5.27% increase in recognition accuracy on 

the Yale database compared to the application of Local Ternary Patterns (LTP). Superior 

performance was also observed on the ORL database. Empirical findings indicated that WLD 

attained an accuracy of 99.25% on the ORL database and 96.97% on the Yale database, 

outperforming LBP, which achieved accuracies of 96% and 90.30% on the same datasets, 

respectively (Gong et al., 2011). 

A proposed algorithm by Kong and Zhang (2015) integrating the WLD and Laplacian-

of-Gaussian (LoG) to achieve illumination invariance, followed by Complete Linear 

Discriminant Analysis (CLDA) for feature extraction (WLD+LoG+CLDA), demonstrated the 

most effective recognition performance on the Yale and Extended Yale Database B. The 

average recognition rate attained on the Yale database was 96%. On the Extended Yale 

Database B, Kong and Zhang (2015) WLD+LoG+CLDA algorithm achieved a recognition rate 

of 99.74%, surpassing the performance of methods employing FastPCA, Fisherface, and 

CLDA independently, as well as LN+CLDA (Local Normalization + CLDA). 

The WLD demonstrates considerable efficacy as a feature extraction technique for face 

recognition, frequently exhibiting superior performance compared to conventional global 

methods such as PCA and ICA, as well as the local descriptor LBP, particularly under variable 

conditions including illumination changes and noise. An evaluation was conducted comparing 

the WLD, LBP, and Scale-Invariant Feature Transform (SIFT) on the Brodatz texture dataset 

corrupted by additive white Gaussian noise. The results indicate that while the performance of 

all three descriptors degrades significantly with noise levels exceeding 5%, WLD demonstrates 

comparatively greater robustness than LBP and SIFT under these challenging conditions (Jie 

Chen et al., 2010). 

 

2.4. Kernel PCA 

Kernel Principal Component Analysis (KPCA) is a non-linear extension of the standard 

PCA (Kim et al., 2002). PCA, while efficacious for linear dimensionality reduction, encounters 

limitations when applied to datasets characterized by non-linear relationships. KPCA 



ISSN 3027-9704 (Print) ● 3027-9712 (Online) | 145 

 

                                                                                        

   

   

addresses this constraint through the implicit mapping of input data into a higher-dimensional 

feature space by employing a kernel function, subsequently performing linear PCA within that 

transformed feature space (Kim et al., 2002; Wang & Zhang, 2010; Peter et al., 2018). 

KPCA is particularly helpful with non-linear patterns in facial images because it 

extends the capabilities of the linear PCA method to handle more complex data 

structures. Peter et al. (2015) stated that the fundamental concept of KPCA involves the 

utilization of a kernel function to effect an implicit mapping of input facial images into a 

higher-dimensional feature space. Facial images frequently exhibit non-linear configurations 

arising from variations in facial expressions, pose, and illumination. The employment of non-

linear kernel functions, such as polynomial kernels or Gaussian kernels (Peter et al., 2018), 

enables KPCA to capture higher-order correlations among the pixels of a facial image (Kim et 

al., 2002). By introducing the kernel function, which avoids the calculation inconvenience of 

inner product in high dimensional feature space. Some kernel functions such as the polynomial 

kernel, Gaussian kernel and sigmoid kernel have been commonly used in many practical 

applications of kernel methods (Kim et al., 2002).  

KPCA has several specific applications within the domain of facial recognition, 

primarily centred around enhancing recognition performance by addressing the limitations of 

linear methods like traditional PCA (Peter et al., 2018). Facial images frequently exhibit 

nonlinear variations attributable to alterations in facial expressions (e.g., smiling, frowning), 

illumination conditions, pose variations, and other appearance deformations (Zhao et al., 

2012). KPCA, through the mapping of input facial images into a higher-dimensional feature 

space via a kernel function, demonstrates a superior capacity to capture these intricate, non-

linear relationships in comparison to linear PCA (Peter et al., 2018). This process yields a 

feature set that is more appropriate for categorization purposes (Zhao et al., 2012). 

Despite operating within a high-dimensional space, KPCA continues to perform 

dimensionality reduction through the extraction of principal components, defined as the 

directions of maximum variance within that space (Kim et al., 2002). This process contributes 

to a reduction in computational complexity and storage demands relative to operating with the 

original high-dimensional image data (Ebied, 2012). The features extracted by KPCA are often 

used as input for various classification algorithms to perform the actual face recognition. 

KPCA serves as an effective preprocessing step that transforms the raw image data into a more 

discriminative feature representation (Prajapati & Navamani, 2023). 
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KPCA is considered a non-linear extension of PCA (Kim et al., 2002). It uses a kernel 

function to map the input data into a higher dimensional feature space before performing linear 

PCA in that space, whereas PCA is a linear approach that determines projection directions of 

maximum variance in the original data (Peter et al., 2018). It can demonstrate superior 

performance compared to standard PCA in the context of face recognition, yielding elevated 

recognition rates and diminished error rates, particularly when addressing variations such as 

facial expressions (Peter et al., 2018). The efficacy of PCA may be limited when confronted 

with intricate non-linear structures (Zhou et al., 2007). Furthermore, KPCA is recognized for 

its capacity to extract feature sets that are more amenable to categorization than those derived 

from classical PCA (Wang & Zhang, 2010). 

Both PCA and LDA are predicated on linear proximity features, which may exhibit 

reduced efficacy when applied to facial images characterized by non-linear attributes (Liliana 

& Setiawan, 2019). KPCA addresses non-linearities through the application of the kernel trick. 

This technique enables the algorithm to capture intricate, non-linear relationships among pixel 

values by implicitly considering high-order correlations, thereby circumventing the 

computational demands associated with explicit operations within the high-dimensional space 

wherein these correlations manifest as linear (Prajapati & Navamani, 2023).  

In an empirical investigation conducted by Peter et al. (2018), the application of KPCA 

yielded a high recognition rate; however, it also resulted in instances of false rejection. This 

observation suggests an inherent limitation in achieving perfect classification across all 

instances, even within the training dataset. Analogous to PCA, standard KPCA operates 

primarily as an unsupervised dimensionality reduction methodology with the objective of 

maximizing variance. Consequently, it may not inherently prioritize the maximization of 

separability between distinct classes (individuals) within facial recognition applications. This 

characteristic can result in the extraction of features that are not optimally discriminative 

between different identities (Liu et al., 2006). 

The efficacy of KPCA exhibits a significant dependency on the selection of the kernel 

function and the specification of its corresponding parameters. The identification of an optimal 

kernel (e.g., polynomial, Gaussian radial basis function, sigmoid) and the subsequent 

calibration of its parameters (e.g., degree 'd' for the polynomial kernel, bandwidth 'σ' for the 

Gaussian kernel) represent a crucial and frequently complex undertaking (Liu et al., 2016). 

Suboptimal parameter selection can present issues such as an ill-conditioned kernel matrix or 
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the failure of the KPCA transformation model. Furthermore, it may contribute to overfitting or 

underfitting the data. 

Different kernel functions possess disparate characteristics and exhibit varying degrees 

of suitability for diverse categories of non-linear problems. Consequently, a singular kernel 

may not demonstrate universal efficacy across the spectrum of variations inherent in facial 

data, including those arising from differences in expression, illumination conditions, and pose 

(Liu et al., 2016). 

 

2.5. Nyström Method 

The Nyström method represents a widely adopted and versatile technique for deriving 

low-rank approximations of kernel matrices, thereby facilitating enhanced scalability of kernel 

methods when applied to extensive datasets. The operation of conducting the 

eigendecomposition on this (nn) matrix incurs a computational complexity of (O(n3)) (Shen et 

al., 2023). Furthermore, the storage of the complete kernel matrix necessitates a memory 

complexity of (O(n2)) (Sterge & Sriperumbudur, 2022). These substantial computational and 

memory requirements render exact KPCA computationally intensive and infeasible for large-

scale datasets. The reduction in computational cost enables the application of KPCA to larger 

datasets for which the exact method is impractical (Sterge & Sriperumbudur, 2022). The 

Nyström method is specifically recognized as one of the most prevalent techniques for 

enhancing the scalability of kernel methods (Hallgren, 2022). 

Nyström approximate KPCA (NY-EKPCA) shows that it can match the statistical 

performance of exact KPCA with less computational complexity, provided the number of 

subsamples is large enough and the number of eigenfunctions used in the reconstruction is not 

too large (Sterge & Sriperumbudur, 2022). Random Fourier Features (RFF) is an 

approximation technique that directly approximates the kernel function through the 

construction of an explicit feature map derived from random sampling of the Fourier transform 

associated with the kernel's distribution. In contrast, the Nyström method approximates the 

kernel matrix using a low-rank matrix, commonly formulated by sampling a subset of the 

training instances, referred to as landmark points (May, 2018). 
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2.6. Ridge Classifier 

Ridge regression is a regularized linear regression technique employed to mitigate 

issues inherent in ordinary least squares (OLS) regression, notably in scenarios involving 

multicollinearity or high-dimensional datasets (Hastie, 2020). 

Standard OLS regression seeks to minimize the sum of squared errors between the 

predicted and observed values. However, in the presence of high correlation among predictor 

variables (multicollinearity), OLS estimates can exhibit instability and high variance (An et 

al., 2007). Ridge regression counters this by adding an ℓ2 penalty term to the OLS cost function 

(Hastie, 2020). This procedure aids in managing the bias-variance trade-off, stabilizing 

coefficient estimates when multicollinearity or limited data are present, and providing a unique 

solution in high-dimensional contexts where OLS is underdetermined. 

Cross-validation enables the testing of models using the entirety of the training set 

through iterative resampling, thereby maximizing the total number of data points employed for 

evaluation and potentially mitigating the risk of overfitting (Rao et al., 2008).  

5-fold cross-validation exhibits a reduced susceptibility to the pronounced negative 

bias observed with leave-one-out (LOO) cross-validation for the c-statistic, particularly when 

employing model estimators that apply shrinkage to estimated probabilities, such as ridge 

regression (Geroldinger et al., 2023). 

V-fold cross-validation, including 5-fold, generally has a smaller computational cost 

compared to methods like leave-one-out cross-validation (where V = n) (Arlot & Lerasle, 

2015). They have also observed that performance often increases substantially when 

transitioning from 2-fold to 5-fold (or 10-fold) cross-validation, with progressively smaller 

gains for larger values of (V), indicating that 5-fold cross-validation presents a favorable 

balance. 

5-fold cross-validation appears to be a robust and generally recommended technique 

for the internal validation of ridge classifiers, offering a favorable balance of bias reduction, 

variance control (particularly with repetitions), and computational efficiency (Geroldinger et 

al., 2023). 

 

2.7. Eigenface and Other Techniques 

The eigenface algorithm addresses varying face poses by utilizing techniques such as 

feature extraction, background removal, image registration, and dimensionality reduction. It 
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extracts Eigen features and Histogram of Oriented Gradient (HOG) features from faces in 

different poses (Rosnelly et al., 2020), removes background using masking, registers images 

through manual landmark detection and affine transformation, and applies log-polar 

transformation for scale and rotation changes (Ranganatha & Gowramma, 2022). Despite these 

challenges, combining Eigenface with other techniques like Support Vector Machines (SVM) 

can enhance accuracy levels, as seen in studies achieving up to 84.29% correct identification 

rates (Maw et al., 2020). 

Eye alignment, also referred to as geometric normalization, constitutes a critical 

preprocessing stage in numerous face recognition systems. This procedure ensures the 

consistent spatial localization of facial features, such as the eyes, across disparate images 

(Dutta et al., 2015). 

Li et al. (2010) further underscore the critical role of face alignment in face recognition 

systems, observing that the majority of approaches exhibit significant sensitivity to facial pose 

and scale, and that inaccurately aligned faces can substantially diminish recognition accuracy. 

Onaran et al. (2024) observed that misalignment consistently diminishes face image quality. 

While image quality does not directly equate to recognition accuracy, the sensitivity of these 

quality assessment methods to misalignment indirectly underscores the importance of precise 

alignment for achieving optimal outcomes in face recognition tasks. 

 

3. Methodology 

3.1. Existing Eigenface Algorithm 

Training Phase 

Step 1: Load the face images dataset. 

Step 2: Resize the images to be uniform in resolution w × h where w is the width and h is the 

height of the image. 

Step 3: Flatten each image into a tall vector of size wh. 

Step 4: Get the mean face by averaging the pixel values of all the images in the dataset. 

Step 5: Normalize each image in the dataset by subtracting the mean face to each image in the 

dataset. 

Step 6: Find the eigenvalues and eigenvectors by performing Principal Component Analysis 

(PCA) on the dataset. 

Step 7: Keep only the m eigenvectors (eigenfaces) where m << n. 
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Step 8: For each image in the dataset, calculate their weight vector of size m by projecting them 

to each of the m eigenfaces. 

Step 9: For each image belonging to the same face class (i.e. same person) in the dataset, 

average the weights computed. 

Step 10: Set a threshold t for maximum allowable distance from each face class. Distances 

greater than t will be classified as ‘unknown’. 

 

Recognition Phase 

Step 11: Load the unknown image. 

Step 12: Resize the images to resolution w × h. 

Step 13: Flatten each image into a tall vector of size wh. 

Step 14: Normalize the unknown image by subtracting it to the mean face. 

Step 15: Project the unknown image to each eigenfaces to get the m-dimensional weight vector. 

Step 16: Get the Euclidean distance of the weights of the unknown image and the averaged 

weights of each face class. 

Step 17: Get the minimum distance and its index. 

Step 18: If the minimum distance exceeds the maximum allowable distance for all face classes, 

classify the unknown image as ‘unknown’. Otherwise, classify the image as belonging to the 

face class corresponding to the index. 

 

3.2. Proposed Eigenface Algorithm 

Training Phase 

Step 1: Load the face images dataset. 

Step 2: Resize the images to be uniform in resolution w × h where w is the width and h is the 

height of the image.  

Step 3: Get the illumination invariant image representations using the Weber Local Descriptor. 

Step 4: Flatten each image into a tall vector of size wh. 

Step 5: Get the mean face by averaging the pixel values of all the images in the dataset. 

Step 6: Normalize each image in the dataset by subtracting the mean face to each image in the 

dataset. 

Step 7: Approximate the kernel matrix via the Nyström method for Kernel Principal 

Component Analysis (KPCA) with a cosine kernel, then reduce dimensionality by retaining 
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the top m principal components from eigendecomposition, where m << n, with n representing 

the total image count. 

Step 8: Project the images to the m principal components in the kernel space reducing the 

dimension from wh to m. 

Step 9: Use Linear Discriminant Analysis (LDA) to the m features obtained from KPCA, 

further reducing the dimensionality to d, where d ≤ c - 1, with c representing the total number 

of face classes in the dataset. 

Step 10: Train a CalibratedClassifierCV with RidgeClassifier to the d features from LDA using 

5-fold cross validation and alpha α to avoid overfitting. 

Step 11: Define a threshold t (0 ≤ t ≤ 1) to reject faces outside the training data, classifying 

outputs from the Ridge Classifier with probabilities less than t as “unknown”. 

Step 12: Combine the KPCA, LDA, and Ridge Classifier into a single pipeline to streamline 

the feature extraction and classification process. 

 

Recognition Phase 

Step 13: Load the unknown image. 

Step 14: Resize the image to w × h. 

Step 15: Get the illumination invariant image representations using the Weber Local 

Descriptor. 

Step 16: Flatten the image into a tall vector of size wh. 

Step 17: Normalize the image by subtracting the mean face. 

Step 18: Feed the normalized image through the pipeline to generate class-specific probability 

outputs. 

Step 19: Get the maximum probability and its index. 

Step 20: If the maximum probability is below the threshold t, classify the image as 'unknown'; 

otherwise, assign the image to the face class corresponding to the identified index. 

 

3.3. Implementation 

Weber Local Descriptor. A common challenge for both traditional and modern face 

recognition algorithms is the variability in illumination across face images. Significant changes 

in lighting conditions negatively impact recognition performance. For instance, the Eigenface 

algorithm exhibits compromised accuracy under low ambient light (0-1700 lux), often 
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resulting in incorrect identifications (Maharani Raharja et al., 2021). Furthermore, the 

Eigenface algorithm's accuracy decreases when training images are acquired in well-lit 

settings, but recognition is performed in dark environments, leading to misclassifications. This 

underscores the sensitivity of face recognition to inconsistencies in illumination between 

training and testing phases. To address the challenges posed by varying illumination conditions 

in recognition tasks, researchers utilized the WLD. The WLD operator characterizes local 

image patterns by analyzing two key components: differential excitation and gradient 

orientation. 

Differential excitation captures the relative intensity changes between a central pixel 

and its surrounding neighbors. This mechanism focuses on the local variations in pixel values, 

making it less sensitive to uniform changes in illumination across the image. Specifically, if a 

constant brightness value is added to all pixels, the differences between neighboring pixels 

remain unaffected, thus preserving the differential excitation values. In addition to differential 

excitation, WLD computes the gradient orientation at each pixel. This component provides 

information about the local directional changes in intensity, further contributing to the 

descriptor's robustness against illumination variations. The computed differential excitation 

and gradient orientation values for all pixels within an image or a specific region are then 

aggregated to form a WLD histogram. This histogram serves as a compact representation of 

the image's local texture characteristics. 

WLD is employed as a preprocessing step prior to feature extraction. By applying WLD 

to the input images, the influence of illumination is significantly reduced. This ensures that 

subsequent feature extraction methods primarily capture intrinsic facial texture information 

rather than variations caused by lighting conditions. 

The inherent design of the WLD operator makes it resilient to common illumination 

variations. As mentioned earlier, a uniform change in brightness (additive constant) does not 

alter the differential excitation values. Furthermore, while a change in image contrast 

(multiplicative constant) scales the differences between neighboring pixels, this effect is 

normalized out during the WLD calculation due to an internal division operation (Jie Chen et 

al., 2010). This normalization step enhances the descriptor's invariance to contrast changes.  

Figure 1 shows the original images of subject “Amyr” vs. its transformation after WLD. 

The texture of the face is retained even if the pictures were taken in different environments. 
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Figure 1 

Original images of subject “Amyr” vs. its transformation after WLD 

 

 

Figure 2 then shows that by using WLD as a preprocessing technique, a person with 

training images on a well-lit environment can still be classified correctly under dark 

environments. 

 

Figure 2 

Correct classification of subject "Amyr" under low-light conditions (a) and training images of subject "Amyr" 

acquired under well-lit conditions (b) 
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Another notable limitation occurs when processing images captured under high 

contrast 'against-the-light' scenarios, where the background illumination significantly exceeds 

that of the foreground subject. Cameras possessing limited dynamic range capabilities, which 

is common in lower-end devices, often attempt to manage the intense background brightness 

by reducing the overall exposure of the image. While this prevents saturation in the 

background, it detrimentally darkens the foreground further, exacerbating underexposure in 

this region and consequently increasing the prominence of image noise. Noise artifacts can 

corrupt texture patterns, hindering accurate surface characterization. As illustrated in Figure 3, 

textures derived from these significantly darkened images exhibit considerable noise, 

consequently leading to degraded feature extraction and potentially impacting the overall 

performance of recognition. 

 

Figure 3 

‘Against-the-light’ images of subject “Amyr” vs. its transformation after WLD. 

 

 

Nyström method for Kernel PCA and Linear Discriminant Analysis. KPCA extends 

the capabilities of traditional PCA by initially employing a kernel function to map the raw data 

into a higher-dimensional feature space. This transformation aims to achieve linear separability 

within the new space, a condition that might not be met in the original data. KPCA, compared 

to traditional PCA, stands out as a robust nonlinear feature extraction technique, demonstrating 

its utility as an effective preprocessing step for various classification algorithms (Prajapati & 

Navamani, 2023). 
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A kernel function, k(xi, xj), is a function that takes two data points, xi  and xj, as input 

and returns a scalar value representing their similarity or inner product in a potentially high-

dimensional feature space. Common examples of kernel functions include the linear kernel, 

polynomial kernel, and radial basis function (RBF) kernel. In this paper, the researchers used 

the cosine kernel as it was the optimal kernel found after grid search with 5-fold cross 

validation on the olivetti face dataset. 

The formula for the cosine kernel according to Mushtaq et al. (2023) is: 

𝑘(𝑥𝑖 , 𝑥𝑗)  =  
𝑥𝑖 ∙ 𝑥𝑗  

‖𝑥𝑖‖ ∙ ‖𝑥𝑗‖
 

 

Given a dataset with n data points {x1 ,x2 ,...,xn}, the Gram matrix K is an n × n matrix 

where the element at the i-th row and j-th column, Kij, is computed as the kernel function 

applied to the i-th and j-th data points: Kij = k(xi ,xj ). The Gram matrix K plays a central role 

in many kernel-based algorithms including KPCA. Instead of directly working with the data 

points in the original input space (or their potentially high-dimensional feature space 

representations), KPCA operates on the Gram matrix. Using eigendecomposition, the principal 

components of the Gram matrix are used to reduce the dimensionality of the original face 

image while making it linearly separable. 

However, for large datasets (where n is large), constructing and manipulating the Gram 

matrix can become computationally expensive. The storage requirement for K is O(n2), and 

operations like eigenvalue decomposition typically have a complexity of O(n3). Nyström 

sampling offers a significant advantage by substantially enhancing the computational 

efficiency of KPCA without compromising its statistical accuracy. The Nyström method's 

main concept is to create a simpler, lower-rank version of the Gram matrix K. This simplified 

version then takes the place of the original K in kernel-based calculations, which helps speed 

things up computationally (Sterge et al., 2020).  

To further develop effective and discriminative projected features that account for 

feature variability, KPCA coefficients can be projected to Linear Discriminant Analysis (LDA) 

projection axis (Alam et al., 2017). LDA identifies a direction (or axis) in the data's feature 

space that maximizes the between-class variance while minimizing the within-class variance. 

By doing this, it enhances the separation between different classes, making it easier to 

distinguish between them for classification purposes. 
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Figure 4(a) presents the t-distributed Stochastic Neighbor Embedding (t-SNE) 

projections, displaying the two-component output of t-SNE when applied to the Yale B dataset 

images, after an initial dimensionality reduction using PCA on the original Eigenface 

algorithm. Due to the large variation in illumination on the Yale B dataset, PCA fails to 

separate classes together, resulting in overlaps on the feature space which may lead to high 

misclassification even with an optimal threshold for rejecting low confidence predictions. 

While figure 4(b) illustrates the t-SNE projections of the same dataset following the application 

of KPCA and LDA on the enhanced algorithm. The resulting cluster formations exhibit 

enhanced clarity and separation between distinct facial classes. This improved separation 

suggests a greater tolerance for unseen images that might exhibit larger variations compared 

to the training data. 

 

Figure 4 

t-SNE of Yale B dataset using PCA (a) and t-SNE of Yale B dataset using KPCA+LDA (b) 

 

 

Figure 5 illustrates the practical benefit of well-separated feature vectors for each face 

class. The enhanced algorithm's improved accuracy and precision in predicting the correct label 

for novel images can be attributed to this characteristic. This also strengthens the algorithm's 

generalization capabilities after it has been exposed to varied images of the same individual 

captured under diverse conditions such as lighting, pose, or image quality, enabling accurate 

classification of new, unseen instances. 
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Figure 5 

Correct classification of subject "Gelo" (a) and training images of subject "Gelo" taken from various conditions 

and angles (b) 

 

 

Ridge Classifier. The original Eigenface algorithm relies on Euclidean distance on 

feature vectors for classification. However, intra-class variations and inter-class similarities 

can compromise accuracy. As illustrated on figure 5, substantial variations and large distances 

can exist within the feature vectors of images belonging to the same class. Concurrently, the 

feature vectors of different face classes may exhibit overlap. Thus, relying on Euclidean 

distance even with the most optimal threshold (maximum allowable distance) may result in a 

high number of misclassifications. 

 Ridge Regression, a linear least squares method with L2 regularization, offers a more 

robust approach by minimizing errors and penalizing large weights, enhancing generalization 

for better feature discrimination. The Ridge Classifier handles multiclass problems by treating 

them as multi-output regression. For C classes, it learns C regression functions. Given a new 

sample, the predicted class is the one corresponding to the regression function with the highest 

output value. While other classification losses exist, the penalized least squares loss in Ridge 

Classifier can yield similar performance. Notably, its ability to compute the projection matrix 
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(XTX)−1XT only once provides computational efficiency, especially with many classes, making 

it a faster alternative in certain scenarios. 

 Ridge Classifiers initially output raw decision scores, not probabilities. To obtain 

meaningful probabilities (0-1), a calibration step is required. This involves training a secondary 

model (calibrator) to map the classifier's scores to calibrated probabilities using observed 

outcomes (Scikit-learn developers, n.d.). To avoid biased calibration due to the classifier's 

performance on its training data, the calibrator must be trained on unseen data. Cross-validation 

is commonly employed: the data is split into folds, the classifier is trained on some folds and 

predicts on a held-out fold, and the calibrator is trained on these out-of-sample predictions and 

true labels. This ensures a more realistic score-to-probability mapping, leading to reliable 

probability estimates on new data.  

The researchers utilized a 5-fold cross-validation strategy with scikit-learn's Calibrated 

Classifier CV model, which internally employs a Ridge Classifier to directly output calibrated 

probabilities. This methodology necessitates a minimum of 5 images per face class to ensure 

that each fold in the cross-validation process contains at least one sample for training and 

validation of the classifier and subsequent calibration. 

 

Figure 6 

Confusion matrices for face classification on the Olivetti Faces dataset:  

(a) PCA features with Euclidean distance; (b) PCA features with Ridge Classifier. 
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Figure 6 presents a comparative analysis of confusion matrices. The left matrix depicts 

the performance of the original algorithm, which employed PCA for dimensionality reduction 

and Euclidean distance for face classification. In contrast, the right matrix illustrates the 

performance of the same algorithm but with the classification step performed by a Ridge 

Classifier instead of Euclidean distance. For comparative evaluation, the Olivetti Faces dataset 

was utilized. The original algorithm, relying on Euclidean distance for classification, attained 

an accuracy of 81%. In contrast, the one incorporating a Ridge Classifier for the classification 

stage demonstrated a significant improvement, achieving an accuracy of 94%. It is important 

to note that the classification stage was the sole modification implemented in the original 

algorithm for this comparison. KPCA and LDA were intentionally excluded for the purpose of 

isolating the impact of the classification method, simplifying the comparison. 

 

4. Findings and Discussion 

This section details the outcomes of experiments designed to assess the performance of 

the enhanced Eigenface Algorithm in face recognition. The evaluation utilized two distinct 

datasets: the Yale B dataset and a custom dataset acquired via the researcher's laptop webcam. 

The enhanced Eigenface Algorithm incorporates several key modifications. Firstly, a 

preprocessing step employing the WLD was introduced to achieve illuminance-invariant 

image representations. Secondly, the traditional PCA for feature extraction was substituted 

with the Nyström method for Kernel PCA, utilizing a cosine kernel, and Linear Discriminant 

Analysis to promote more clustered feature vectors for each identity. Finally, the Euclidean 

distance metric used for classification in the original Eigenface approach was replaced with a 

Ridge Classifier to enhance classification robustness. 

 

4.1. Improved Performance Under Varying Lighting Conditions Using WLD 

 

The Yale B dataset, containing 2,414 images of 38 individuals under extreme lighting 

variations, was used to evaluate the enhanced Eigenface Algorithm's performance under 

diverse illumination. Employing a 50/50 train/test split, the results illustrated in figure 8 

demonstrate a substantial improvement across all four evaluation metrics, most notably the 

increase in accuracy from the original algorithm's 5.6% to the enhanced algorithm's 99.83%. 
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This indicates that the enhanced algorithm exhibits robust performance even when presented 

with face images captured under varying lighting conditions. 

 

Figure 7 

The first 5 images in the Yale B dataset 

 

 

Figure 8 

Performance of the original and enhanced Eigenface algorithm on the Yale B dataset 

 

 

4.2. Improved Separation of Classes Using KPCA and LDA 

To illustrate the enhanced separation of classes, the researchers compiled a custom 

dataset. This dataset, while featuring only 7 individuals, includes images of each subject 

captured under diverse real-world conditions encompassing variations in lighting, pose, and 

angle. The intentional variability in image acquisition was designed to demonstrate the 
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scattering of feature vectors for each face class across the feature space, mirroring the 

challenges encountered in unconstrained face recognition scenarios. 

Figure 9 displays the t-SNE projection of the feature vectors derived from the custom 

dataset. For the original algorithm, these feature vectors were obtained after applying PCA. In 

contrast, for the enhanced algorithm, the feature vectors visualized were generated after the 

application of KPCA followed by LDA. This shows the extreme attempt of the enhanced 

algorithm to separate the feature vector of each face class which results in a more stable 

classification. 

 

Figure 9 

t-SNE of custom dataset using PCA (a) and t-SNE of custom dataset using KPCA+LDA (b) 

 

Figure 10 

The first 5 images in the custom dataset 

 

Figure 11 shows the evaluation of the enhanced Eigenface algorithm vs. the original 

Eigenface algorithm on the custom dataset. While the original algorithm achieved a high 

accuracy rate of 92%, the enhanced algorithm achieved 100% performance on all four metrics. 

It also generalizes well when the algorithm is used in real-time recognition using only a laptop 

webcam. 
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Figure 11 

Performance of the original and enhanced Eigenface algorithm on the custom dataset 

 

 

Figure 12 

Recognition of an unseen image of subject “Amyr” with Original algorithm (a) and Enhanced algorithm (b) 
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To prove that the enhanced algorithm generalizes well in the real world, an unseen face 

image of subject “Amyr” was fed into the algorithm, both the original and enhanced. The 

original algorithm misclassified the face as belonging to subject “Gino” while the enhanced 

algorithm still classified it correctly as “Amyr”. 

 

4.3. Improved classification precision using Ridge Classifier 

To specifically examine the impact of employing a Ridge Classifier for the 

classification stage in face recognition, the original algorithm was modified solely by replacing 

the Euclidean distance metric with a Ridge Classifier. The deliberate exclusion of KPCA and 

LDA in this modified version was intended to isolate and assess the effect of the Ridge 

Classifier without the confounding influence of different feature extraction techniques. 

Figure 13 presents a comparative analysis of confusion matrices obtained using the custom 

dataset, which features scattered feature vectors for each face class. Subfigure (a) illustrates 

the confusion matrix of the original, unmodified algorithm. Subfigure (b) displays the 

confusion matrix of the original algorithm where the classification step was modified to utilize 

a Ridge Classifier instead of Euclidean distance. The original algorithm achieved an accuracy 

of 94% on this dataset, while the modified algorithm incorporating the Ridge Classifier 

demonstrated a perfect accuracy of 100%. 

 

Figure 13 

Confusion matrices for face classification on the custom dataset: PCA features with Euclidean distance (a) and 

PCA features with Ridge Classifier (b) 
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4.4. Improved Performance Against Larger Dataset 

To assess the effectiveness of the enhanced algorithm, we conducted experiments on 

the wild_lfw dataset as seen in figure 14. This dataset contains 26,480 face images of 1,324 

distinct individuals, with each image resized to a resolution of 64x64. 

 

Figure 14 

The first 10 images of the wild_lfw dataset. 

 

The enhanced algorithm's improved classification performance on the Wild_LFW 

dataset is clearly demonstrated in figure 15. The feature space exhibits a substantially more 

refined structure, indicating a more effective embedding of facial identities and a diminished 

ambiguity in differentiating between individuals when compared to the original approach. 

 

Figure 15 

t-SNE of feature vectors on wild_lfw with original algorithm (a) and enhanced algorithm (b) 
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During the evaluation on the wild_lfw dataset, a critical limitation of the original 

algorithm was observed. As depicted in Figure 16, the original algorithm encountered a system 

failure and was unable to process the entirety of the dataset, presumably due to the substantial 

volume of image data inherent in wild_lfw. 

 

Figure 16 

The original algorithm crashed when tested against the wild_lfw dataset 

 

In contrast, the enhanced algorithm demonstrated robust performance on the same 

dataset, achieving a recognition accuracy of 82.46%, as detailed in table 1. This stark contrast 

underscores the improved stability and scalability of the enhanced algorithm in handling large-

scale image datasets for facial recognition tasks. 

 

Table 1 

Comparison of metrics between the original and enhanced algorithm on the wild_lfw dataset 

Metric Original Enhanced 

Presicion - 0.8372 

Accuracy - 0.8246 

Recall - 0.8246 

F1 Score - 0.8115 

 

Across the spectrum of datasets employed for evaluation, the enhanced algorithm 

consistently outperformed its original counterpart. This superiority was particularly 

pronounced on specialized datasets designed to assess robustness against specific challenges. 

As evidenced in table 2 the enhanced algorithm demonstrated a significant advantage on the 

Yale B dataset, which is characterized by substantial variations in illumination. 
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Table 2 

Comparison of metrics between the original and enhanced algorithm on the Yale B dataset 

Metric Original Enhanced 

Presicion 0.0688 0.9984 

Accuracy 0.0561 0.9993 

Recall 0.0370 0.9984 

F1 Score 0.0454 0.9984 

 

Similarly, table 3 reveals a notable performance gain on the Olivetti dataset, known for 

its inherent pose variations. Furthermore, the enhanced algorithm exhibited superior results on 

the custom dataset curated by the researchers, as presented in table 4. These findings 

collectively underscore the enhanced algorithm's improved generalization capabilities and its 

efficacy in mitigating the adverse effects of challenging conditions such as varying lighting 

and pose, as well as its adaptability to novel data distributions. 

 

Table 3 

Comparison of metrics between the original and enhanced algorithm on the Olivetti dataset 

Metric Original Enhanced 

Presicion 0.8208 0.9187 

Accuracy 0.8125 0.8750 

Recall 0.8125 0.8750 

F1 Score 0.7975 0.8775 

 

Table 4 

Comparison of metrics between the original and enhanced algorithm on the custom dataset 

Metric Original Enhanced 

Presicion 0.9313 1.0000 

Accuracy 0.9262 1.0000 

Recall 0.9349 1.0000 

F1 Score 0.9263 1.0000 

 

5. Conclusion 

The enhanced Eigenface algorithm presents significant improvements over the original 

algorithm by addressing three primary limitations. First, the enhanced algorithm tackles the 

original algorithm's sensitivity to varying lighting conditions by incorporating the Weber Local 
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Descriptor (WLD) as a preprocessing step. WLD effectively normalizes light levels, thus 

enhancing the algorithm's robustness under different illumination scenarios. Second, to 

improve class separability and dimensionality reduction, the enhanced algorithm replaces 

Principal Component Analysis (PCA) with Kernel PCA (KPCA) and Linear Discriminant 

Analysis (LDA). KPCA maps the data into a higher-dimensional space for better linear 

separability, while LDA optimizes the separation between different classes. For large datasets, 

the Nyström method is employed to approximate the kernel matrix in KPCA, increasing 

computational efficiency. Third, the enhanced algorithm replaces the Euclidean distance 

classifier with a Ridge Classifier to enhance classification accuracy and robustness. The Ridge 

Classifier uses L2 regularization to prevent overfitting, leading to improved generalization and 

performance. Overall, these enhancements contribute to a more accurate and robust face 

recognition system suitable for real-world applications. 

 

 

Disclosure statement  

No potential conflict of interest was reported by the author(s).  

 

Funding 

This work was not supported by any funding. 

 

AI Declaration 

The author declares the use of Artificial Intelligence (AI) in writing this paper. In particular, 

the author used ChatGPT and Gemini in enhancing the grammar and writing of this paper as 

well as help in interpreting some of the literatures and other materials. The author takes full 

responsibility in ensuring that research idea, analysis and interpretations are original work. 

 

ORCID 

Amyr Edmar L. Francisco - https://orcid.org/0000-0003-2775-9351  

 

 

 

https://orcid.org/0000-0003-2775-9351


168 | International Student Research Review, Volume 2 Issue 1 

References  

Alam, S., Kwon, G., & The Alzheimer’s Disease Neuroimaging Initiative (2017). Alzheimer 

disease classification using KPCA, LDA, and multi‐kernel learning SVM. 

International Journal of Imaging Systems and Technology, 27(2), 133–143. 

https://doi.org/10.1002/ima.22217  

An, S., Liu, W., & Venkatesh, S. (2007). Face recognition using kernel ridge regression. IEEE 

Conference on Computer Vision and Pattern Recognition, pp. 1-7. 

https://doi.org/10.1109/CVPR.2007.383105  

Annubaha, C., Widodo, A. P., & Adi, K. (2022). Implementation of eigenface method and 

support vector machine for face recognition absence information system. Indonesian 

Journal of Electrical Engineering and Computer Science, 26(3), 1624. 

https://doi.org/10.11591/ijeecs.v26.i3.pp1624-1633  

Arlot, S., & Lerasle, M. (2015). Choice of V for V-Fold Cross-Validation in Least-Squares 

Density Estimation. arXiv. https://doi.org/10.48550/arXiv.1210.5830  

Artac, M., Jogan, M., & Leonardis, A. (2002). Incremental PCA for on-line visual learning and 

recognition. Object Recognition Supported by User Interaction for Service Robots, 3, 

781–784. https://doi.org/10.1109/ICPR.2002.1048133  

Carcagnì, P., Del Coco, M., Leo, M., & Distante, C. (2015). Facial expression recognition and 

histograms of oriented gradients: A comprehensive study. SpringerPlus, 4(1), 645. 

https://doi.org/10.1186/s40064-015-1427-3  

Chen, S., Luo, L., Yang, J., Gong, C., Li, J., & Huang, H. (n.d.). Curvilinear Distance Metric 

Learning. https://gcatnjust.github.io/ChenGong/paper/chen_nips19.pdf  

Dahmouni, A., Abdelouahad, A. A., & Silkan, H. (2024). A noise-robust descriptor: 

applications to face recognition. Journal of Theoretical and Applied Information 

Technology, 102(10), 4361-4373. 

Gong, D., Li, S. & Xiang, Y. (2011). Face recognition using the Weber Local Descriptor. The 

First Asian Conference on Pattern Recognition, 589–592. 

https://doi.org/10.1109/ACPR.2011.6166675  

Dorbi, H., & Joshi, P. (2023). Face Recognition Algorithms: A Comparative Study. 

International Research Journal of Modernization in Engineering Technology and 

Science. https://doi.org/10.56726/IRJMETS41255  

https://doi.org/10.1002/ima.22217
https://doi.org/10.1109/CVPR.2007.383105
https://doi.org/10.11591/ijeecs.v26.i3.pp1624-1633
https://doi.org/10.48550/arXiv.1210.5830
https://doi.org/10.1109/ICPR.2002.1048133
https://doi.org/10.1186/s40064-015-1427-3
https://gcatnjust.github.io/ChenGong/paper/chen_nips19.pdf
https://doi.org/10.1109/ACPR.2011.6166675
https://doi.org/10.56726/IRJMETS41255


ISSN 3027-9704 (Print) ● 3027-9712 (Online) | 169 

 

                                                                                        

   

   

Dutta, A., Günther, M., El Shafey, L., Marcel, S., Veldhuis, R., & Spreeuwers, L. (2015). 

Impact of eye detection error on face recognition performance. IET Biometrics, 4(3), 

137–150. https://doi.org/10.1049/iet-bmt.2014.0037  

Ebied, H. M. (2012). Kernel-PCA for face recognition in different color spaces. 2012 Seventh 

International Conference on Computer Engineering & Systems (ICCES), 201–206. 

https://doi.org/10.1109/ICCES.2012.6408513  

Er, M. J., Chen, W., & Wu, S. (2005). High-speed face recognition based on discrete cosine 

transform and RBF neural networks. IEEE Transactions on Neural Networks, 16(3), 

679–691. https://doi.org/10.1109/TNN.2005.844909  

Fahmy, G., El-Sherbeeny, A., Mandala, S., Abdel-Mottaleb, M., & Ammar, H. (2006). The 

effect of lighting direction/condition on the performance of face recognition 

algorithms, 62020J. https://doi.org/10.1117/12.666527  

Fei, Z., Yang, E., Li, D., Butler, S., Ijomah, W., & Mackin, N. (2018). Eigenface algorithm-

based facial expression recognition in conversations—an experimental study. In J. Ren, 

A. Hussain, J. Zheng, C.-L. Liu, B. Luo, H. Zhao, & X. Zhao (Eds.), Advances in Brain 

Inspired Cognitive Systems (Vol. 10989, pp. 342–351). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-00563-4_33  

Geroldinger, A., Lusa, L., Nold, M., & Heinze, G. (2023). Leave-one-out cross-validation, 

penalization, and differential bias of some prediction model performance measures—

A simulation study. Diagnostic and Prognostic Research, 7(1), 9. 

https://doi.org/10.1186/s41512-023-00146-0  

Hallgren, F. (2022). Kernel PCA with the Nyström method (No. arXiv:2109.05578). arXiv. 

https://doi.org/10.48550/arXiv.2109.05578  

Hastie, T. (2020). Ridge regularization: An essential concept in data science. Technometrics, 

62(4), 426–433. https://doi.org/10.1080/00401706.2020.1791959  

Javed Mehedi Shamrat, F. M., Ghosh, P., Tasnim, Z., Khan, A. A., Uddin, Md. S., & 

Chowdhury, T. R. (2022). Human face recognition using eigenface, SURF Method. In 

G. Ranganathan, R. Bestak, R. Palanisamy, & Á. Rocha (Eds.), Pervasive Computing 

and Social Networking (Vol. 317, pp. 73–88). Springer Nature Singapore. 

https://doi.org/10.1007/978-981-16-5640-8_7  

Jie Chen, Shiguang Shan, Chu He, Guoying Zhao, Pietikäinen, M., Xilin Chen, & Wen Gao. 

(2010). WLD: A robust local image descriptor. IEEE Transactions on Pattern Analysis 

https://doi.org/10.1049/iet-bmt.2014.0037
https://doi.org/10.1109/ICCES.2012.6408513
https://doi.org/10.1109/TNN.2005.844909
https://doi.org/10.1117/12.666527
https://doi.org/10.1007/978-3-030-00563-4_33
https://doi.org/10.1186/s41512-023-00146-0
https://doi.org/10.48550/arXiv.2109.05578
https://doi.org/10.1080/00401706.2020.1791959
https://doi.org/10.1007/978-981-16-5640-8_7


170 | International Student Research Review, Volume 2 Issue 1 

and Machine Intelligence, 32(9), 1705–1720. 

https://doi.org/10.1109/TPAMI.2009.155  

Kekre, H. B., Sarode, T. K., & Save, J. K. (2014). Gender classification of human faces using 

class based PCA. International Journal of Scientific and Research Publications, 4(2), 

1-9.  

Kong, R., & Zhang, B. (2015). An effective new algorithm for face recognition. International 

Conference on Computer Science and Intelligent Communication, Zhengzhou, China. 

https://doi.org/10.2991/csic-15.2015.94  

Kim, K., Jung, K. & Kim, H.J. (2002). Face recognition using kernel principal component 

analysis. IEEE Signal Processing Letters, 9(2), 40–42. 

https://doi.org/10.1109/97.991133  

Li, H., Wang, P., & Shen, C. (2010). Robust face recognition via accurate face alignment and 

sparse representation. International Conference on Digital Image Computing: 

Techniques and Applications, 262–269. https://doi.org/10.1109/DICTA.2010.54  

Liliana, D.Y., & Setiawan, A.I.M. (2019). Face recognition with kernel principal component 

analysis and support vector machine. International Conference on Informatics, 

Multimedia, Cyber and Information System (ICIMCIS), 175–180. 

https://doi.org/10.1109/ICIMCIS48181.2019.8985199  

Liu, C., Zhang, T., Ding, D., & Lv, C. (2016). Design and application of Compound Kernel-

PCA algorithm in face recognition. 35th Chinese Control Conference (CCC), 4122–

4126. https://doi.org/10.1109/ChiCC.2016.7553997  

Liu, N., Wang, H., & Yau, W.-Y. (2006). Face recognition with weighted kernel principal 

component analysis. 9th International Conference on Control, Automation, Robotics 

and Vision, 1–5. https://doi.org/10.1109/ICARCV.2006.345161  

Maharani Raharja, N., Arief Fathansyah, M., & Nur Nazilah Chamim, A. (2021). Vehicle 

parking security system with face recognition detection based on eigenface algorithm. 

Journal of Robotics and Control (JRC), 3(1), 78–85. 

https://doi.org/10.18196/jrc.v3i1.12681  

Maw, H.M., Thu, S.M., & Mon, M.T. (2020). Eigenface based facial expression recognition. 

International Conference on Advanced Information Technologies (ICAIT), 117–122. 

https://doi.org/10.1109/ICAIT51105.2020.9261777  

https://doi.org/10.1109/TPAMI.2009.155
https://doi.org/10.2991/csic-15.2015.94
https://doi.org/10.1109/97.991133
https://doi.org/10.1109/DICTA.2010.54
https://doi.org/10.1109/ICIMCIS48181.2019.8985199
https://doi.org/10.1109/ChiCC.2016.7553997
https://doi.org/10.1109/ICARCV.2006.345161
https://doi.org/10.18196/jrc.v3i1.12681
https://doi.org/10.1109/ICAIT51105.2020.9261777


ISSN 3027-9704 (Print) ● 3027-9712 (Online) | 171 

 

                                                                                        

   

   

May, A. (2018). Kernel approximation methods for speech recognition. Journal of Machine 

Learning Research, 20, 1-36. 

Mushtaq, Z., Qureshi, M. F., Abbass, M. J., & Al‐Fakih, S. M. Q. (2023). Effective kernel‐

principal component analysis based approach for wisconsin breast cancer diagnosis. 

Electronics Letters, 59(2), e212706. https://doi.org/10.1049/ell2.12706  

Onaran, E., Sarıtaş, E., & Ekenel, H. K. (2024). Impact of face alignment on face image quality 

(No. arXiv:2412.11779). arXiv. https://doi.org/10.48550/arXiv.2412.11779  

Park, J.-K., Park, H.-H., & Park, J. (2017). Distributed eigenfaces for massive face image data. 

Multimedia Tools and Applications, 76(24), 25983–26000. 

https://doi.org/10.1007/s11042-017-4823-6  

Peter, M., Minoi, J.-L., & Hipiny, I. H. M. (2019). 3D face recognition using kernel-based 

PCA Approach. In R. Alfred, Y. Lim, A. A. A. Ibrahim, & P. Anthony (Eds.), 

Computational Science and Technology (Vol. 481, pp. 77–86). Springer Singapore. 

https://doi.org/10.1007/978-981-13-2622-6_8  

Rao, R. B., Fung, G., & Rosales, R. (2008). On the dangers of cross-validation. An 

experimental evaluation. Proceedings of the 2008 SIAM International Conference on 

Data Mining, 588–596. https://doi.org/10.1137/1.9781611972788.54  

Rehman, A., Khan, A., Ali, M. A., Khan, M. U., Khan, S. U., & Ali, L. (2020). Performance 

analysis of PCA, Sparse PCA, Kernel PCA and Incremental PCA Algorithms for Heart 

Failure Prediction. International Conference on Electrical, Communication, and 

Computer Engineering (ICECCE), 1–5. 

https://doi.org/10.1109/ICECCE49384.2020.9179199  

Rosnelly, R., Simanjuntak, M. S., Clinton Sitepu, A., Azhari, M., Kosasi, S., & Husen. (2020). 

Face recognition using eigenface algorithm on laptop camera. 8th International 

Conference on Cyber and IT Service Management (CITSM), 1–4. 

https://doi.org/10.1109/CITSM50537.2020.9268907  

Scikit-learn developers (n.d.). 1.1. Linear Models. (n.d.). https://scikit-

learn/stable/modules/linear_model.html  

Scikit-learn developers (n.d.). 1.16. Probability calibration. https://scikit-

learn/stable/modules/calibration.html   

Scikit-learn developers (n.d.). 6.7. Kernel Approximation. https://scikit-

learn/stable/modules/kernel_approximation.html  

https://doi.org/10.1049/ell2.12706
https://doi.org/10.48550/arXiv.2412.11779
https://doi.org/10.1007/s11042-017-4823-6
https://doi.org/10.1007/978-981-13-2622-6_8
https://doi.org/10.1137/1.9781611972788.54
https://doi.org/10.1109/ICECCE49384.2020.9179199
https://doi.org/10.1109/CITSM50537.2020.9268907
https://scikit-learn/stable/modules/linear_model.html
https://scikit-learn/stable/modules/linear_model.html
https://scikit-learn/stable/modules/calibration.html
https://scikit-learn/stable/modules/calibration.html
https://scikit-learn/stable/modules/kernel_approximation.html
https://scikit-learn/stable/modules/kernel_approximation.html


172 | International Student Research Review, Volume 2 Issue 1 

Ranganatha, S. & Gowramma, Y. P. (2022). Eigen and HOG features based algorithm for 

human face tracking in different background challenging video sequences. 

International Journal of Image, Graphics and Signal Processing, 14(4), 70–83. 

https://doi.org/10.5815/ijigsp.2022.04.06  

Shen, K., Wang, H., Chaudhuri, A., Asgharzadeh, Z. (2023). Automatic Gaussian Bandwidth 

Selection for Kernel Principal Component Analysis. In: Jin, Z., Jiang, Y., Buchmann, 

R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and 

Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14117. Springer, 

Cham. https://doi.org/10.1007/978-3-031-40283-8_2 

Singh, G., & Chhabra, I. (2018). Effective and fast face recognition system using 

complementary OC-LBP and HOG feature descriptors with SVM classifier. Journal of 

Information Technology Research (JITR), 11(1), 91–110. 

https://doi.org/10.4018/JITR.2018010106  

Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of 

human faces. Journal of the Optical Society of America A, 4(3), 519. 

https://doi.org/10.1364/JOSAA.4.000519  

Sterge, N., & Sriperumbudur, B. (2021). Statistical optimality and computational efficiency of 

nyström kernel PCA (No. arXiv:2105.08875). arXiv. 

https://doi.org/10.48550/arXiv.2105.08875  

Sterge, N., & Sriperumbudur, B. K. (2022). Statistical optimality and computational efficiency 

of nyström kernel PCA. Journal of Machine Learning Research, 23, 1-32. 

Sterge, N., Sriperumbudur, B., Rosasco, L., & Rudi, A. (2020). Gain with no Pain: Efficiency 

of Kernel-PCA by Nyström sampling. Proceedings of the Twenty Third International 

Conference on Artificial Intelligence and Statistics, PMLR 108:3642-3652. 

Prajapati, S.K. & Navamani, C. (2023). Effective approach for face recognition and active 

shape 3D models using kernel principal component analysis. International Journal of 

Engineering Technology and Management Sciences, 7(2), 787–797. 

https://doi.org/10.46647/ijetms.2023.v07i02.085  

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive 

Neuroscience, 3(1), 71–86. https://doi.org/10.1162/jocn.1991.3.1.71  

https://doi.org/10.5815/ijigsp.2022.04.06
https://doi.org/10.1007/978-3-031-40283-8_2
https://doi.org/10.4018/JITR.2018010106
https://doi.org/10.1364/JOSAA.4.000519
https://doi.org/10.48550/arXiv.2105.08875
https://doi.org/10.46647/ijetms.2023.v07i02.085
https://doi.org/10.1162/jocn.1991.3.1.71


ISSN 3027-9704 (Print) ● 3027-9712 (Online) | 173 

 

                                                                                        

   

   

Wang, Y., & Zhang, Y. (2010). Facial recognition based on kernel PCA. Third International 

Conference on Intelligent Networks and Intelligent Systems, 88–91. 

https://doi.org/10.1109/ICINIS.2010.88  

Zhang, Y.J. (Ed.). (2011). Advances in face image analysis: techniques and technologies. IGI 

Global. https://doi.org/10.4018/978-1-61520-991-0  

Zhao, L., Dong, J., & Li, X. (2012). Research on KPCA and NS-LDA Combined Face 

Recognition. Fifth International Symposium on Computational Intelligence and 

Design, 140–143. https://doi.org/10.1109/ISCID.2012.43  

Zhou, J., Liu, Y., & Chen, Y. (2007). Face recognition using kernel PCA and hierarchical RBF 

network. 6th International Conference on Computer Information Systems and 

Industrial Management Applications (CISIM’07), 239–244. 

https://doi.org/10.1109/CISIM.2007.28  

 

https://doi.org/10.1109/ICINIS.2010.88
https://doi.org/10.4018/978-1-61520-991-0
https://doi.org/10.1109/ISCID.2012.43
https://doi.org/10.1109/CISIM.2007.28

