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Abstract 

Seam carving is a popular method of resizing an image while maintaining important content by adding or 

removing seams. The key to this approach is the importance map, distinguishing seams of the least visual 

significance. Nevertheless, traditional approaches struggle to preserve local and global image 

characteristics, causing visible artifacts that can significantly diminish visual fidelity. This study presents a 

new importance map combining Bubble Entropy, a Euclidean distance saliency map, and Haar wavelets 

for edge detection. Bubble Entropy is excellent at finding regularity and structural continuity across pixel 

neighborhoods, tracing significant seams. The saliency map's perceptually uniform property enhances 

color variation assessment, improving the detection of salient regions and textures. Additionally, Haar 

wavelet transforms enhance edge detection by maintaining structural transitions while resizing. By 

calculating the combined importance map, the proposed approach settles at the optimal balance between 

local and global characteristics of an image. The proposed algorithm outperforms previous seam carving 

algorithms in terms of perceptual quality metrics: LPIPS, MSSIM, HyperIQA and TOPIQ with the 

RetargetMe dataset. Execution time was also significantly reduced using the Numba package. 

Experimental results show image content preservation while improving visual quality and presenting a 

stronger approach for content-aware image resizing. 
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1. Introduction 

Recent advancements in display technology have introduced a wide range of display 

sizes, demanding the adaptation of the same content to various dimensions and aspect ratios 

across different devices. Web pages account pixel dimensions or resolutions when displaying 

images. Most common screen resolutions for desktop screens range from 1024×768 to 

1920×1080, mobile screens range from 360×640 to 414×896, and tablets range from 

601×962 to 1280×800 (Polson, 2024). Traditional downscaling, which uniformly reduces all 

image elements, often makes small objects harder to recognize (Pal & Tripathi P., 2016). 

This lack of consideration can lead to key details being lost or distorted, emphasizing the 

need for more sophisticated image adjustment techniques that respect the integrity of the 

original content. 

Seam Carving is a content-aware image resizing method that adapts images to new 

dimensions by intelligently carving out or inserting pixels in areas based on their 

significance. In contrast to conventional resizing methods like cropping and scaling, which 

are content-agnostic, seam carving maintains visual features such as the aspect ratio and the 

composition of objects, thereby preserving the intrinsic aesthetics of the image. A seam 

represents a path of low-energy pixels within the image and can be vertical or horizontal. A 

vertical seam traverses from the top to the bottom of the image, intersecting one pixel per 

row, whereas a horizontal seam spans from left to right, touching one pixel per column. Its 

optimality can be defined by the energy function, and the seams can either be removed to 

reduce image size or duplicated to expand them. 

The key to seam carving is the generation of the importance map as a basis for 

carving out the least important seams. However, traditional seam carving algorithms suffer 

from the following drawbacks: (1) noticeable artifacts that degrade the resized image’s visual 

quality due to the algorithm’s importance map failing to capture global features of the image; 

and (2) time-consuming calculation of image’s energy map, insertion and removal of optimal 

seams leads to the algorithm’s low execution speed. This research directly addresses these 

limitations, aiming to refine the seam carving process. To achieve this, an implementation of 

a new importance map combining Bubble entropy, Euclidean distance saliency map, and 

Haar wavelets for edge detection are integral to highlight the images local and global 

information. Furthermore, to address the algorithm’s low execution speed, an implementation 
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of greedy algorithm for seam finding and usage of the Numba package are vital in reducing 

execution time significantly.  

 

2. Literature Review  

The traditional seam carving, proposed by Shai Avidan and Ariel Shamir (2007), uses 

a backward energy function to define the importance of a pixel. However, after a seam was 

removed, causing a redistribution of pixel values in the resized image, the energy function 

ignored the inserted energy for the pixels and used the previous energy map of the original 

image instead. This results in noticeable artifacts or distortions in the resized image. And so, 

a year later, the authors of the first paper on seam carving proposed the forward energy 

function, which considers the impact of seam removal on neighboring pixels (Avidan & 

Shamir, 2009). On the other hand, Noh and Han (2012) proposed an energy function based 

on the forward gradient differences for seam carving in both orientation and magnitude 

before and after the removal of a seam. This results in preserving regular structures, i.e., 

straight lines and smooth curves. The improved seam carving is efficient but slower than the 

original algorithm.  

The forward and backward energy functions both have their own benefits. But in spite 

of that, damage to local structure (or image features) and to the global visual effect (or 

overall appearance or composition of the image) occurs frequently in seam carving since the 

algorithm repeatedly removes seams until the desired image size is reached without 

considering the real visual effect (Lin et al., 2014). In addition, Garg et al. (2014) 

investigated seam carving and simulated the aliasing effect of increasing image size. The 

optimal seam is calculated and replicated to be inserted into the image as a fraction of the 

original enlarged image size. Extreme seam insertion causes an aliasing effect, which can 

degrade the image's overall visual appearance.  

Seam carving algorithm uses dynamic programming to find the optimal seam or 

minimum seam cost in the image (Garg & Negi, 2020). Given that dynamic programming 

requires many iterations, computing the optimal seam by pixel by pixel, the seam carving 

algorithm’s process of inserting and deleting seams is time consuming (Lin et al., 2014; Garg 

et al., 2014). Meanwhile, a block-based seam carving (BSC) approach was introduced by 

Mishiba and Ikehara (2011), where “a seam element is a pixel block, and a seam is a path of 

blocks." Instead of removing seams, downsampling the block of seams is done, which 
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reduces the pixel’s width and creates fewer distortions than seam carving. In contrast to the 

traditional SC, which decreases the image’s width one pixel at a time, BSC shrinks the 

image’s width in one process. This makes BSC faster than seam carving. However, there are 

some cases where the resizing results have artifacts. 

Entropy, a concept in image processing, quantifies the uncertainty or complexity of 

an image or signal. Tsai et al. (2007) use the Shannon entropy, focusing on transmitted 

information (TI) as a single, unified metric for assessing the quality of digital radiographic 

images. Meanwhile, Kao and Nutter (2006) proposed a novel image resizing technique called 

the Maximum Entropy Algorithm (MEA), which is designed specifically for biomedical 

imaging applications, it works by selecting the most informative pixel from each local 

neighborhood. There are multiple variations of entropies created, as by Ribeiro et al. (2021). 

Among the many forms of entropy developed, Shannon entropy, differential entropy, Tsallis 

entropy, sample entropy, approximate entropy, and permutation entropy have been the most 

frequently cited in the literature. In recent years, permutation and sorting-based entropies 

have shown the most significant growth in impact on scientific works. 

According to Manis et al. (2017), bubble entropy quantifies sorting effort (number of 

swaps) using bubble sort to compute pixel entropy, replacing Shannon's entropy in 

generating an importance map for improved seam carving. By eliminating the r parameter 

and minimizing the impact of m, it simplifies parameter tuning while enhancing efficiency 

and stability. On the other hand, Achanta and Sabine (2009) found that the traditional 

grayscale intensity gradient maps only show higher energy at the edges, which is sensitive to 

noise and deformations on salient objects. Thus, rather than just the edges or texture regions, 

they proposed a saliency detection scheme based on seam carving to generate a map that 

assigns saliency values to the entire salient region and is computed only once. Similarly, Tian 

et al. (2007) introduced a saliency-based approach for change detection in remote sensing 

images using an improved Itti visual saliency model. The emphasis on feature fusion and 

robustness illustrates saliency maps’ effectiveness in discerning visually meaningful areas, 

echoing the goals of seam carving algorithms. Since seam carving seeks to remove non-

salient pixels while preserving content integrity, such saliency-driven techniques reinforce 

the importance of accurately modeling visual attention in spatial transformations. 

This study computes the importance map with the image in the CbxCr channel. 

Dargham et al. (2018) analyzed the performance of individual channels of the YCBCR color 
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space relative to gray scale images in face recognition applications, and further in particular 

in surveillance applications. Results show that although gray scale always outperforms each 

individual YCBCR channel, the combination of CBxCR with another channel perform better 

than gray scale performance in certain training conditions. Another method used to compute 

the importance map is haar-wavelet edge detection. Fan et al. (2007) proposed a differential 

Haar-Gaussian (DHG) wavelet transform with a bandwidth matching algorithm to accurately 

detect edges. The proposed scheme is especially suitable for images taken with telecentric 

optics, which have to be wide depth of focus. Method capable of mitigating blur from 

defocus and thus does not sacrifice accuracy in terms of edge measurement across multiple 

defocus situations. Experimental data points to the fact that this approach does not 

compromise the accuracy of the measurement, leakage below 0.22% even for large 

defocused distances. In another study, the use of wavelet transforms in image processing 

effectively reduces computational requirements while maintaining high image quality (Liaw 

et al., 2020). Low-pass filtering helps focus on essential features, while high-pass 

components adjust disparities, improving performance and accuracy. Researchers have noted 

that adaptive selection of window sizes based on edge information further enhances disparity 

calculations, leading to better matching accuracy and fewer errors, while ensuring that 

important image details are preserved during estimation. 

With respect to improving performance, this study applies the Just-In-Time (JIT) 

compilation and greedy algorithm for faster seam carving. According to Brock et al. (2018), 

JIT compilation dynamically converts code into machine language during runtime, aiming to 

improve execution speed for frequently used ("hot") code sections. Traditional JIT 

compilation policies often rely on simplistic metrics, such as invocation counts, to determine 

which methods to compile. JIT compilation plays a pivotal role in improving the runtime 

performance of dynamic programming languages by compiling hot sections of code on the 

fly. This process enables applications to achieve execution speeds closer to those of statically 

compiled languages while maintaining the flexibility of dynamic execution. According to 

Jant and Kulkarni (2013), JIT compilation bridges the gap between the flexibility of 

interpreted execution and the performance of statically compiled languages. In modern JIT 

systems, optimization phases play a crucial role in determining the quality of the compiled 

code, directly impacting execution speed, memory usage, and energy consumption. In 

addition, Kawakibi (2022) proposed an implementation of the greedy seam carving algorithm 
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that seeks to reduce memory overhead while maintaining quality, albeit with potential trade-

offs concerning the global optimality of the seams selected. The Sobel operator plays a 

pivotal role in defining energy functions, and its application for edge detection remains a 

foundational component in enhancing seam carving approaches. 

Several methods have been proposed to address the challenges of content-aware 

image and video retargeting. Traditional downscaling like cropping and scaling (CR & SCL), 

which uniformly reduces all image elements, often makes small objects harder to discern (Pal 

et al., 2016). SC removes or duplicates seams of pixels to resize images, but can introduce 

noticeable jags in structural objects (Rubinstein et al., 2008). Warping methods (WARP) 

deform a grid mesh to fit new dimensions, but may suffer from edge flipping or fail to 

preserve prominent lines (Wolf et al., 2007). Shift-map editing (SM) represents image editing 

operations as a graph labeling problem, but may not always capture user intentions (Pritch et 

al., 2009). Multi-operator approaches (MULTIOP) combine different operators, SC, SCL, 

and CR for improved results, but the optimization can be computationally expensive 

(Rubinstein et al., 2009). These methods have limitations, such as potential distortion of 

important features, artifacts in homogeneous regions, or high computational complexity. 

Zhang et al. (2018) proposed the Learned Perceptual Image Patch Similarity (LPIPS) 

metric, which uses deep network features to measure perceptual similarity between images. 

Deep features from various networks correlate better with human visual similarity judgments 

than traditional metrics like SSIM and PSNR. By calibrating deep embeddings with human 

perceptual data, LPIPS provides a more reliable and human-aligned image quality assessment 

across distortions and real-world image processing tasks. On the other hand, Wang et al. 

(2003) proposed the Multiscale Structural Similarity Index (MS-SSIM). This method 

improves the original SSIM by measuring quality of images at different scales, which 

increases precision depending on factors like view distance and resolution. This also points 

out issues with many conventional measures, including Peak Signal-to-Noise Ratio (PSNR) 

and Mean Squared Error (MSE), and their discrepancies with human perception. MS-SSIM is 

a more accurate quantitative description of the differences between images as perceived by 

the human visual system, and therefore gives more relevance to the assessment of image 

quality. 

Su et al. (2023) also introduced a self-adaptive hyper network architecture for BIQA, 

which separates the assessment process into three stages: content understanding, perception 
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rule learning, and quality prediction. By adaptively establishing perception rules from 

extracted image semantics, the model estimates image quality in a self-adaptive manner, 

enhancing its generalization to a wide range of image types. Experiments show that this 

approach outperforms state-of-the-art methods on authentic image databases while also 

performing competitively on synthetic datasets. 

Chen et al. (2023) also proposed a unimodal deep model based top-down IQA 

approach by learning from deep multi-scale features. Their method consists of a heuristic 

coarse-to-fine attention network, called CFANet. Imitating the human visual system (HVS) 

flow, the process in which semantic information is progressively passed from highest level 

down to lowest level in the HVS is reproduced in this system. This heuristic design 

circumvents the complexity of choosing between multiple features from different scales and 

has been found to be successful. CFANet is available for Full-Reference (FR) and No- 

Reference (NR) IQA. They employ ResNet50 as its backbone and show that CFANet 

performs better or approximately the same as (the state of the art) on most public FR and NR 

benchmarks as those methods based on vision transformers, yet they are much more efficient 

(an estimate of ~13% of the FLOPS for the state of the art FR method). 

 

3. Methodology  

3.1. Research Design 

This study employs an experimental and computational research design to develop 

and evaluate the enhanced seam carving algorithm. The approach involves implementing and 

testing modifications such as Haar wavelet edge detection, bubble entropy, and saliency 

detection for improved energy map generation. The design enables evaluation of the 

proposed method against traditional seam carving techniques based on quantitative 

performance metrics, such as preservation of salient image content, computational efficiency, 

and visual quality. This approach ensures that the effectiveness of the enhancements can be 

objectively assessed and compared to existing methods. 

Figure 1 represents the methodology of the enhanced seam carving algorithm for 

content-aware image resizing. It visually outlines the sequential steps involved in processing 

an image, computing an optimized energy map, and performing seam removal or addition 

based on the resizing requirements. 
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Figure 1 

Flowchart of the proposed algorithm 

 

Source: draw.io website was used to make this figure 

It begins with the input image checking if the desired size is achieved, if not, we 

convert the image to its CbxCr color space and use it for the computation of the energy map. 

The energy map combines the image’s computed bubble entropy (BEn), saliency map, and 

edges. With the computed energy map, the greedy algorithm is applied to identify the least 

important seam (path of pixels with the lowest energy). It then determines whether to reduce 

or enlarge the image so it can either remove or add the identified seam. The process repeats 

from the step of computing the energy map until the image reaches the required dimensions. 

 

 3.2. Hardware and Software Requirements 

Experiments were done online in the google colab environment with the following 

system specifications: CPU model of Intel(R) Xeon(R) CPU @ 2.20GHz and 13GB memory. 

The algorithm was implemented using the Python language and it utilizes various Python 

libraries to facilitate image processing, mathematical computations, and performance 

optimization. The PyWavelets (pywt) is employed for Haar wavelet edge detection, which 

helps in refining the energy map. Image conversion utilities such as color transformations, 

float conversions, loading and saving of images are done with OpenCV (cv2) and scikit-

image (skimage) library. NumPy (numpy) supports efficient numerical operations and matrix 
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manipulations, it also goes hand in hand with the Numba package which accelerates 

computation-heavy tasks by just-in-time (JIT) compilation, optimizing loops and array 

operations for improved performance. These dependencies collectively enhance the 

efficiency and accuracy of the seam carving process. On the other hand, the perf_counter() 

method from the time library was used to benchmark the execution time of the proposed 

algorithm. 

 

3.3. RetargetMe Dataset 

This dataset contains all the images and retargeted results of other resizing algorithms 

from the study of Rubinstein et al. (2010). It is composed of 80 images with some images 

retargeted using methods such as cropping (cr), multi-operator (multiop), seam carving (sc), 

scaling (scl), shift-maps (sm), scale-and-stretch (sns), streaming video (sv), energy-based 

deformation (LG), and nonhomogeneous warping (warp). Most of the retargeted images are 

reductions in width; thus, the removal of seams on width is used for comparison. There are 

other retargeting methods in the dataset not mentioned; however, not all images in the dataset 

were retargeted using those methods. Only the methods mentioned, excluding energy-based 

deformation (LG), are used for comparison, comprising 61 images from the dataset.  

 

3.4. Performance Metrics 

Using Chen and Mo’s (2022) PyTorch toolbox for image quality assessment, or 

PYIQA, two (2) full-reference (FR) metrics and two (2) no-reference (NR) metrics were 

chosen to evaluate the proposed method: LPIPS for symmetric (VGG net) and asymmetric 

(VGG+ net) images by Zhang et. al. (2018), MS-SSIM by Wang et. al. (2003), HyperIQA by 

Su et. al. (2020), and TOPIQ by Chen et. al. (2023), respectively. 

The LPIPS metrics was proposed by Zhang et al. (2018), it uses deep network 

features to measure perceptual similarity between images and provides a human-aligned 

image quality assessment. On the other hand, Wang et al. (2003) introduced the MS-SSIM, 

which improves the accuracy of traditional SSIM under various conditions like resolution 

and viewing distance. MS-SSIM better reflects how visual system interprets information, 

offering a more meaningful evaluation of image quality. Meanwhile, Su et al. (2021) 

proposed a self-adaptive hyper network for blind image quality assessment in the wild. It 

separates the task into content understanding, perception rule learning, and quality prediction, 
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improving performance on diverse, real-world distortions by dynamically adapting quality 

assessment based on image content. Lastly, Chen et al. (2023) introduced TOPIQ using 

CFANet. By leveraging cross-scale attention, the method guides focus on important local 

distortions based on high-level semantics, achieving efficient, human-like quality predictions 

across various benchmarks. 

 

4. Findings and Discussion  

 

This section presents the experimental results with 61 images from the RetargetMe 

dataset and discusses the effectiveness of the proposed enhanced seam carving algorithm 

based on image quality assessment and computational efficiency. The results are analyzed 

using full-reference and no-reference image quality metrics, as well as execution time 

comparisons with and without Numba JIT optimization. 

 

4.1. Image Quality Assessment 

To evaluate the quality of the retargeted images, full-reference metrics LPIPS-VGG, 

LPIPS+VGG, and MS-SSIM were used. The full reference metrics requires the images, 

retargeted image and original image, to be the same resolution (width x height). Thus, two 

tables have been generated to resize both images to the retargeted image’s size (table 1) and 

original image’s size (table 2). As full-reference metrics scale the images to the same size, it 

would be safe to assume that the scaling method would outperform any other methods. To 

avoid bias, methods that use scaling such as multi-operator (multiop) and scaling (scl) itself 

are removed from the assessment.  

In LPIPS-based metrics, lower values indicate better image quality, while in MS-

SSIM, higher values are preferred. The results show that the proposed method (ours) 

outperforms existing methods, achieving the lowest LPIPS values and the highest MS-SSIM 

for both retargeted image-size based (table 1) and original image-size (table 2) based metrics 

values, suggesting better preservation of perceptual quality. 
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Table 1 

Retargeted image size-based full-reference metrics values 

 LPIPS-VGG LPIPS+-VGG MS-SSIM 

Method Mean Std. Mean Std. Mean Std. 

cr 0.511421 0.065614 0.531789 0.06136 0.425474 0.09988 

sc 0.413225 0.086541 0.430218 0.083127 0.49353 0.132954 

sm 0.510556 0.076351 0.528083 0.073383 0.387395 0.114567 

sns 0.473239 0.077917 0.501528 0.083131 0.42324 0.115056 

sv 0.40233 0.098679 0.42828 0.108519 0.509366 0.135113 

warp 0.355387 0.110557 0.376038 0.111377 0.554840 0.149486 

ours 0.348672 0.092663 0.372872 0.093622 0.583237 0.147726 

Legend: In LPIPS, the lower the values the better. While in MS-SSIM, the higher the values the better. First 

best is highlighted in red, while the second best is highlighted in blue.  

 

 

Table 2 

Original image size-based full-reference metrics values 

 LPIPS-VGG LPIPS+-VGG MS-SSIM 

Method Mean Std. Mean Std. Mean Std. 

cr 0.524337 0.066468 0.549173 0.062792 0.43914 0.098799 

sc 0.438204 0.086051 0.459456 0.083196 0.503262 0.126168 

sm 0.527124 0.075235 0.549071 0.071732 0.409782 0.11113 

sns 0.494168 0.078598 0.526216 0.083652 0.434266 0.110186 

sv 0.434657 0.096772 0.464339 0.10721 0.509695 0.130417 

warp 0.396247 0.104356 0.421251 0.107135 0.562668 0.137215 

ours 0.376636 0.097604 0.406796 0.098706 0.588743 0.139395 

 Legend: In LPIPS, the lower the values the better. While in MS-SSIM, the higher the values the better. First 

best is highlighted in red, while the second best is highlighted in blue.  

 

For no-reference metrics (table 3), HyperIQA and TOPIQ were used to assess the 

overall quality without a ground truth reference. This means only the retargeted images are 

assessed without needing to use the original images for reference.  

The results indicate that the proposed method achieves competitive scores, with 

0.678812 in HyperIQA and 0.680138 in TOPIQ, ranking among the best methods. These 

findings suggest that the enhanced seam carving approach maintains structural consistency 

and perceptual quality in the resized images. 
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Table 3 

No-reference metrics values 

Time LPIPS-VGG MS-SSIM 

Method Mean Std. Mean Std. 

cr 0.665145 0.091607 0.676049 0.097707 

multiop 0.683985 0.086856 0.694194 0.092259 

sc 0.671163 0.086695 0.677899 0.096204 

scl 0.673183 0.081991 0.683191 0.091897 

sm 0.636631 0.090089 0.639643 0.099257 

sns 0.652248 0.08576 0.66124 0.093155 

sv 0.649704 0.083086 0.657748 0.089017 

warp 0.630816 0.089117 0.627769 0.098226 

ours 0.678812 0.083474 0.680138 0.092839 

Legend: The higher the values the better. First best is highlighted in red, while the second best is highlighted in 

blue. 

 A side-by-side comparison of images (car1, glasses, jon, and Sanfrancisco) from the 

RetargetMe dataset is resized using different methods is shown in figure 1.  

 

 

Figure 1 

Image comparisons 

 

 

 

 

 

 

 

 

Note: (a) original image, (b) cr, (c) multiop, 

(d) sc, (e) scl, (f) sm, (g) sns, (h) sv, (i) warp, 

(j) ours 
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The proposed method (ours) preserves important image structures while avoiding 

excessive distortions and artifacts. 

 

4.2. Computational Efficiency 

To assess performance improvements, the execution time of the seam carving process 

was compared with and without Numba JIT optimization (table 4).  Five (5) images from the 

RetargetMe dataset were chosen for evaluation: car1, car2, face, getty, and surfers.  

 

Table 4 

Time execution in seconds 

    Without Numba JIT With Numba JIT  

Image Width Height 
No. of 

seams 
T(s) 

T(s) / no. 

seams 
T(j) 

T(j) / no. 

seams 
Change % 

car1 384 385 96 761.53778 7.9326852 60.738750 0.6326953 -92.0242 

car2 500 375 125 1226.6987 9.8135901 107.58805 0.8607044 -91.2295 

face 392 300 98 594.91162 6.0705268 44.753490 0.4566682 -92.4773 

getty 500 334 125 1159.4086 9.2752693 84.838023 0.6787041 -92.6826 

surfers 333 500 83 706.59558 8.5131998 54.762562 0.6597899 -92.2498 

       Average -92.1327 

 Legend: T / no. seams is equal to the time executed per seam. Change from T(s) to T(j) is computed. 

 

The images without Numba JIT executed for 11 to 21 minutes in comparison to 44 

seconds to 2 minutes range execution with Numba JIT. The results demonstrate a significant 

reduction in execution time. The proposed method reduces computational time by an average 

of 92.13%, highlighting the effectiveness of using Numba for accelerating the seam finding 

and energy map computations. 

 

5. Conclusion  

Content-aware image resizing techniques have advanced significantly over the years. 

In seam carving, enhancing the importance map can greatly improve the accuracy of the 

algorithm. This paper introduces a new importance map that integrates bubble entropy, a 

saliency map, and Haar wavelet edge detection to optimize image resizing within the seam 

carving framework. To evaluate the effectiveness of the proposed approach, experiments 

were conducted using the RetargetMe dataset, with results analyzed through quantitative 
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metrics. Additionally, both full-reference and no-reference image quality assessments were 

performed for visual evaluation. The simulation results demonstrate that the proposed 

method outperforms traditional seam carving techniques. For future improvements, object or 

face detection could be incorporated, as images containing faces are more prone to distortion 

and visual artifacts. Moreover, utilizing a more advanced saliency map could enhance the 

detection of important regions. Machine learning and deep learning techniques may further 

refine the accuracy and efficiency of the proposed algorithm. 
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