Institute of Industry and Academic Research Incorporated
Register in
IJSTEM Cover Page
International Journal of Science, Technology, Engineering & Mathematics

ISSN 2799-1601 (Print) 2799-161X (Online)

H-index: 7
ICV: 87.82

Selection and identification of Pseudomonas and Bacillus Rhizobacteria with Bioinoculant potential for Sorghum

Befekadu Teshome, Eleni Belay, Barkelegne Mengesha, Zerihun Tsegaye, Edwin K. Akley & Awuku Frederick
Volume 5 Issue 2, June 2025

This study aimed to select and identify elite strains of plant growth-promoting rhizobacteria (PGPR) among phosphate-solubilizing bacteria (PSB) conserved at the Ethiopian Biodiversity Institute. In-vitro screening for plant growth-promoting traits and abiotic stress tolerance identified 12 promising PGPR isolates. These strains exhibited phosphate solubilization (index 1.8–3.2), auxin production, nitrogen fixation, and ammonia production. All isolates showed drought tolerance, and some exhibited salt tolerance (up to 10% NaCl). 16S rDNA sequencing identified Pseudomonas frederiksbergensis, Pseudomonas fluorescens, Pseudomonas rhodesiae, Pseudomonas azotoformans, and Bacillus altitudinis. These strains have strong potential as bioinoculants for sustainable sorghum cultivation. Future greenhouse and field trials are recommended to validate their effectiveness.

identification, Sorghum, plant growth, rhizobacteria

Befekadu Teshome. Correspondent author. Ethiopian Biodiversity Institute, Microbial Biodiversity Research, Addis Ababa, Ethiopia. E-mail: Beftesh@gmail.com

Eleni Belay. Ethiopian Biodiversity Institute, Microbial Biodiversity Research, Addis Ababa, Ethiopia.

Barkelegne Mengesha. Ethiopian Biodiversity Institute, Microbial Biodiversity Research, Addis Ababa, Ethiopia.

Zerihun Tsegaye. Ethiopian Biodiversity Institute, Microbial Biodiversity Research, Addis Ababa, Ethiopia.

Edwin K. Akley. Savana Agricultural Research Institute, Soil Microbiology Department, Tamale, Ghana.

Awuku Frederick. Savana Agricultural Research Institute, Soil Microbiology Department, Tamale, Ghana.

"Author 1 conceptualized and finalized the research framework. Author 1 drafted the manuscript, and Author 1, 4 and 5 revised it. Author 1, 2, 3, 4 gathered the data, and Author 1 and 6 analyzed and interpreted the data. All authors contributed to the writing of the final version of the manuscript."

No potential conflict of interest was reported by the author(s).

This work is funded by the Bio-Bridge Initiative of the Secretariat of the Convention on the Biological Diversity.

Not Applicable

AI tools were not used in writing this paper.

Adesemoye, A.O., & Kloepper, J.W. (2009). Plant-microbe’s interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol, 85(1), 1–12. https://doi.org/10.1007/s00253-009-2196-0

Ahmad, H. M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A. N., Gul, B., Aziz, O., Mahmood-Ur- Rahman, Fakhar, A., Rafique, M., Chen, Y., Yang, S. H., & Wang, X. (2022). Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: A review. Frontiers in Plant Science, 13, 875774. https://doi.org/10.3389/fpls.2022.875774

Akhtar A, Hisamuddin, Robab, M.I., Sharf, A. & Sharf, R. (2012). Plant growth promoting rhizobacteria: An overview. J. Nat. Prod. Plant Resour, 2(1), 19-31. https://doi.org/10.3390/microorganisms11041088

Ansari, F., Jabeen, M. & Ahmad, I. (2021). Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, 18. https://doi.org/10.1007/s13762-020-03045-9

Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol Lett, 32, 1559–1570. https://doi.org/10.1007/s10529-010-0347-0

Barriuso J., Solano, B.R., José, A.L., Lobo, A.P., García-Villaraco, A., & Gutiérrez Mañero, F.J. (2008). Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: I. Ahmad, J. Pichtel, & S. Hayat, Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth. Wiley Online Library. https://doi.org/10.1002/9783527621989.ch1

Cappuccino, J.C., & Sherman, N. (1992). Microbiology: A Laboratory Manual, 3rd edn. Benjamin/cummings Pub.

Costa, R., Götz, M., Mrotzek, N., Lottmann, J., Berg, G., & Smalla, K. (2005). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology and Ecology, 56, 236–249. https://doi.org/10.1111/j.1574-6941.2005.00026.x

Chiu-Chung, Y., & Bhagwath, A. (2003). Exploring the microbial potentiality to augment soil fertility in Taiwan. 6th ESAFS International Conference Soil Management Technology on Low productivity and degraded soils. https://doi.org/10.13140/RG.2.1.1055.9205

Chatterjee, P., Samaddar, S., Anandham, R., Kang, Y., Kim, K., Selvakumar, G., & Sa, T. (2017). Beneficial soil bacterium Pseudomonas frederiksbergensis Os261 augments salt tolerance and promotes red pepper plant growth. Frontiers in Plant Science, 8. https://pubmed.ncbi.nlm.nih.gov/28523010/

Dardanelli, M. S., Carletti, S. M., Paulucci, N. S., Medeot, D. B., Rodriguez Ca´ceres, E. A., Vita, & Garcia, M. B., (2010). Benefits of plant growth-promoting rhizobacteria and rhizobia in      agriculture. In D. K. Maheshwari, (Ed.), Plant Growth and Health Promoting Bacteria, Microbiology Monographs, 18, 1-20.  Berlin, Germany: Springer Berlin Heidelberg.

Datta M., Palit R., Sengupta, C., Kumar, M., & Banerjee, S. (2011). Plant growth promoting rhizobacteria enhance growth and yield of Chili (Capsicum annuum L.) under field conditions. Australian Journal of Crop Science, 5,531–536.

Egamberdiyeva, D, & Islam, K.R. (2008). Salt tolerant rhizobacteria: plant growth promoting traits    and physiological characterization within ecologically stressed environment. In: Ahmad, I, Pichtel, J, Hayat, S. (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH, Weinheim, 257–281

Elfira, Y., Kusmiyati, F. & Budiharjo, A. (2020). The Effect of Bacillus altitudinis P-10

combination treatments on the plant growth and seed quality of Corn (Zea mays L).  Bioma, 22(2), 80-187. https://doi.org/10.14710/bioma.22.2.180-187

Felsenstein, J.   (1985).   Confidence   limits   on   phylogenies:  An   approach   using   the bootstrap. Evolution, 39(4), 783-791. https://doi.10.1111/j.1558-5646.1985.tb00420.x

Gise`, G., Laguerre, G., Mavingui, P., Allard, M.R., Charnay, M.P., Louvrier, P., Mazurier, S.I., Rigottier-Gois, L., Noe¨, N., & Amarger, N. (1996). Typing of Rhizobia by PCR DNA fingerprinting and PCR-Restriction Fragment Length Polymorphism Analysis of Chromosomal and Symbiotic Gene Regions: Application to Rhizobium leguminosarum and   its different biovars.  Applied and Environmental Microbiology, 62(6). https://doi.org/10.1128/aem.62.6.2029-2036.1996   

Gupta, S., Meena, M.K. & Datta, S. (2014). Isolation, characterization of plant growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen fixation, phosphate solubilization and IAA production. Int.J.Curr.Microbiol.App.Sci, (7), 1082-1090.

Gusain, P., & Bhandari, B.S.  (2019).  Rhizosphere associated PGPR functioning.  J Pharmacognosy and Phytochem, 8(5), 1181-1191.

Hart, M.M. & Trevors, J.T. (2005). Microbe management: Application of mycorrhyzal fungi in sustainable agriculture. Frontiers in Ecology & the Environment, 3(10), 533-539.

Idris, A., Labuschagne, N. & Korsten, L. (2009). Efficacy of rhizobacteria for growth promotion    in sorghum under greenhouse conditions and selected modes of action studies. Journal of Agricultural Science, 147, 17–30. https://doi.10.1017/S0021859608008174

Jime´nez-Salgado T, Fuentes-Ramrez LE, Tapia-Herna´ndez A, Mascarua-Esparza MA, Martnez-Romero E, & Caballero-Mellado J. (1997). Coffea arabica L., a new host plant for Acetobacter    diazotrophicus    and    isolation    of    nitrogen-fixing acetobacteria. Applied   Environmental Microbiology, 63(9), 3676–3683. https://doi.10.1128/aem.63.9.3676-3683.1997

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2),111-120. https://doi.10.1007/BF01731581

Kloepper, J.W., Reddy, S.M., Rodreguez-Kabana, R., Kenney, D.S., Kokalis- Burelle, N., & Ochoa, N.M. (2004.) Application for rhizobacteria in transplant production and yield enhancement. Acta Horticulturae, 631(28), 217-229. https://doi.org/10.17660/ActaHortic.2004.631.28

Krieg, N.R., Staley, J.T., Brown, D.R., Hedlund, B.P., Paster, B.J., Ward, N.L., Ludwig, W., & Whitman, W.B. (2010). Bergey’s manual of systematic bacteriology (Second Edition). Springer. https://doi.org/10.1007/978-0-387-68572-4

Kumar, G.P., MirHassanAhmed, S.K., Desai, S., Amalraj, E.L.l, & Rasul, A. (2014). In- vitro   screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp.   Int. J. of Bact, 195946. http://dx.doi.org/10.1155/2014/195946

Kumar, P., Desai, S., Amalraj, L.D., Ahmed, M.H. & Reddy, G. (2012). Plant growth promoting Pseudomonas spp.  from diverse agro-ecosystems of India for Sorghum bicolor. Journal of Biofertilizers & Biopesticides, 7. https://doi.org/10.4172/2155-6202.s7-001  

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary   genetics   analysis   across   computing   platforms. Molecular Biology and Evolution, 35(6),1547-1549. https://doi.org/10.1093/molbev/msy096

Kumar, T., Bibhuti, A., Mishra, B., Annapurna, K., Kumar, D., Upendra, V., & Editors, K.  (2017). Advances in soil microbiology: Recent trends and future prospects 2. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-7380-9

Lone, R., Hassan, N., Bashir, B, Rohela, G.K., & Malla, N.A. (2023). Role of growth elicitors and microbes in stress management and sustainable production of Sorghum. Plant Stress, 9 (2023), 100179. https://doi.org/10.1016/j.stress.2023.100179

Lucy, M., Reed, E., & Glick, B.R. (2004). Applications of free-living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86(1), 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e

Lugtenberg, B.J., Dekkers, L, & Bloemberg, G.V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol, 39, 461–490.  https://doi.org/10.1146/annurev.phyto.39.1.461

Maheshwari, D.K., Dubey, R.C., Aeron, A., Kumar, B., Kumar, S., Tewari, S., & Arora, N.K. (2012). Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol, 28 (10), 3015–3024. https://doi.org/10.1007/s11274-012-1112-4

Mampallil, L.J., Faizal, M.H., & Anith, K.N. (2017). Bacterial bioagents for insect pest management. J. Entomol Zool Stud, 5(6), 2237-2244.

Manasa, T.K, Reddy, R., & Triveni, S. (2017). Isolation and characterization of Pseudomonas fluorescens isolates from different rhizosphere soils of Telangana. Journal of Pharmacognosy and Phytochemistry, 6(3), 224-229.

Matson, P.A., Parton, W.J., Power, A.G., & Swift, M.J. (1997). Agricultural intensification and ecosystem properties. Science, 277(5325),504-509. https://doi.org/10.1126/science.277.5325.504

Monk, J., Gerard, E., Young, S., Widdup, K., & O’Callaghan, M. (2009). Isolation and identification of plant growth-promoting bacteria.   Proceedings of the New Zealand Grassland Association, 71, 211-216.

Muleta, D., Assefa, F., Borjesson, E., & Granhall, U. (2013) Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 12(1),73-84. https://doi.org/10.1016/j.jssas.2012.07.002

Oo, K.T., Win, T.T., Khai, A.A. & Fu, P.C. (2020) Isolation, screening and molecular characterization of multifunctional plant growth promoting rhizobacteria for a sustainable agriculture. American Journal of Plant Sciences, 11, 773-792. https://doi.org/10.4236/ajps.2020.116055

Patten, C., & Glick, B. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microb, 68(8), 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002

Pikovskaya’s, R.I. (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya, 17, 362–370.

Raj, D.P. & Cherian, N. (2013). Isolation and characterization of rhizobacteria from forest soils    for in vitro study on crop growth enhancement. Int J Curr Sci E, 3(4), 19-23.

Rashid, M., Khalil, S., Ayub, N., Alam, S., & Latif, F. (2004). Organic acid production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences, 7(2), 187-196. https://doi.org/10.3923/pjbs.2004.187.196

Rodríguez, H., Fraga, R., Gonzalez, T. & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil, 287, 15-21.  https://doi.org/10.1007/s11104-006-9056-9

Saharan, B.S., & Nehra, V. (2011). Plant Growth Promoting Rhizobacteria: A critical review. Life Sciences and Medicine Research, 1-20.

Sheng, X.F. (2005). Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem, 37(2005), 1918–1922. https://doi.org/10.1016/j.soilbio.2005.02.026

Singh, D., Ghosh, P., Kumar, J., & Kumar, A. (2019). Plant Growth-Promoting Rhizobacteria (PGPRs): Functions and Benefits. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_7

Thanh, D.T.N., & Diep, C.N. (2014). Isolation and identification of rhizospheric bacteria in acrisols of maize (Zea mays L.) in the eastern of South Vietnam. American Journal of Life Sciences, 2(2), 82-89.

Verma, T. & Pal, P. (2020). Isolation and screening of rhizobacteria for various plant growth promoting attributes. Journal of Pharmacognosy and Phytochemistry, 9(1),1514-1517.  https://doi.org/10.22271/phyto.2020.v9.i1z.10678

Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant & Soil, 255, 571-586. https://doi.org/10.1023/A:1026037216893

Weisburg, W.G., Barns, S.M., Pelletier, D. A., & Lane, D.J. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology,173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

Wen, Y., Jin, Y., Wang, J., & Cai, L. (2015). MiSeq sequencing analysis of bacterial community    structures in wastewater treatment plants. Pol. J. Environ. Stud, 24 (4), 1809-1815. https://doi.org/10.15244/pjoes/38456

Widawati, S., & Suliasih. (2018). The effect of plant growth promoting rhizobacteria (pgpr) on germination and seedling growth of Sorghum bicolor L. Moench. IOP Conference     Series: Earth and Environmental Science, 166(2018), 012022. https://doi.org/10.1088/1755-1315/166/1/012022

Yamaoka-Yano, D.M., Amorim, E., Valarini, P.J., Melo, I.S., & Kosako, Y. (1988). Characterization of rhizobacteria from Citrus rhizosphere to control Phytophthora nicotinae var. parasitica and P. citrophthora. Nature Biotechnology, 6(3), 282-286.

Yang, J., Kloepper, J. W., & Ryu, C. M. (2009b). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4. https://doi.org/10.1016/j.tplants.2008.10.004

Ye, S., Yan, R., Li, X., Lin, Y., Yang, Z., Ma, Y. & Ding, Z. (2022). Biocontrol potential of Pseudomonas rhodesiae GC-7 against the root-knot nematode Meloidogyne graminicola through both antagonistic effects and induced plant resistance. Front. Microbiol, 13 – 2022. https://doi.org/10.3389/fmicb.2022.1025727

Zahid, M., Abbasi, M.K., Hameed, S. & Rahim, N. (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zeamays L.) Frontiers in Microbiology, 6(207). https://doi.org/10.3389/fmicb.2015.00207

Zahir, Z.A., Munir, A., Asghar, H.N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol, 18(5), 958–963.

Cite this article:

Teshome, B., Belay, E., Mengesha, B., Tsegaye, Z., Akley, E.K. & Frederick, A. (2025). Selection and identification of Pseudomonas and Bacillus Rhizobacteria with Bioinoculant potential for Sorghum cultivation. International Journal of Science, Technology, Engineering and Mathematics, 5(2), 38-59. https://doi.org/10.53378/ijstem.353191

License:

ai generated, holographic, interface-8578468.jpg
library, people, study-2245807.jpg
bookshelf, books, library-2907964.jpg
Scroll to Top