The study determined the growth and yield response of pepper (Capsicum annuum L.) to varying concentrations and frequencies of Carrageenan Plant Growth Promoter (CPGP). The study was set-up in a split-plot randomized complete block design with three replications. The three varying application frequencies were designated as main-plots, and the four concentrations of CPGP, as sub-plots. Peppers applied with 120 ppm and two to three times application of CPGP significantly matured earlier based on number of days to flowering and number of days to first priming. The same treatment combination resulted in significantly taller plants and higher number of lateral shoots. In terms of yield, however, CPGP at 120 ppm applied three times gave significantly higher number and heavier weight of fruits. The concentration of 120 ppm CPGP applied thrice in growing pepper is shown in the study to be the best treatment combination, thus, is recommended to improve the growth and increase the yield of pepper.
carrageenan, CPGP, application frequency, concentration
Xaviery Joseph F. Guzman. Corresponding author. Faculty, College of Agriculture, Nueva Vizcaya State University. Email: xaviery_guzman@yahoo.com
Manolo T. Valdez. Faculty, College of Agriculture, Nueva Vizcaya State University
Abad, L.V., Aurigue, F.B., Montefalcon, D.R., Manguiat, P.H., Carandang, F.F., Mabboraong, S.A., Hizon, M.G.S., & Abella, M.E.S. (2018). Effect of radiation-modified kappa-carrageenan as plant growth promoter on peanut (Arachis hypogaea L.). Radiation Physics and Chemistry, 153, 239-244. https://doi.org/10.1016/j.radphyschem.2018.10.005
Abad, L.V., Aurigue, F.B., Relleve, L.S., Montefalcon, D.R.V., & Lopez, G.E.P. (2016). Characterization of low molecular weight fragments from gamma-irradiated κ-carrageenan used as plant growth promoter. Radiation Physics and Chemistry, 118, 75-80. https://doi.org/10.1016/j.radphyschem.2015.03.001
Abad, L.V., Dean, G., Magsino, G.L., Cruz, R.M., Tecson, M.G., Abella, M.E., & Hizon, M.G. (2018). Semi-commercial scale production of carrageenan plant growth promoter by E-beam technology. Radiation Physics and Chemistry, 143, 53-58. https://doi.org/10.1016/j.radphyschem.2017.07.009
Abad, L.V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., & Katsumura, Y. (2009). Radiation degradation studies of carrageenans. Carbohydrate Polymers, 78, 100–106. https://doi.org/10.1016/j.carbpol.2009.04.009
Abad, L.V., Saiki, S., Nagasawa, N., Kudo, H., Katsumura, Y., & De La Rosa, A.M. (2011). NMR analysis of fractionated k-carrageenan oligomers as plant growth promoter. Radiation Physics and Chemistry, 80, 977-982. https://doi.org/10.1016/j.radphyschem.2011.04.006
Ahmad, B., Jahan, A., Sadiq, Y., Shabbir, A., Jaleel, H., & Khan, M. M. (2018). Radiation-mediated molecular weight reduction and structural modification in carrageenan potentiates improved photosynthesis and secondary metabolism in peppermint (Mentha piperita L.). International Journal of Biological Macromolecules, 124, 1069-1079. https://doi.org/10.1016/j.ijbiomac.2018.12.022
Akhter, S., Mostarin, T., Khatun, K., Akhter, F., & Parvin, A. (2018). Effects of plant growth regulator on yield and economic benefit of sweet pepper (Capsicum annuum L.). The Agriculturists, 16, 58-64. https://doi.org/10.3329/agric.v16i02.40343
Ali, A., Khan, M., Moinuddin, A., Naeem, M., Idrees, M., & Hashmi, N. (2014). Radiolytically depolymerized sodium alginate improves physiological activities, yield attributes and composition of essential oil of Eucalyptus citriodora Hook. Carbohydrate Polymers, 112, 134-144. https://doi.org/10.1016/j.carbpol.2014.05.070
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10. https://doi.org/10.3390/plants10030531
Begum, M., Bordoloi, B.C., Singha, D.D., & Ojha, N.J. (2018). Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Reviews, 39(4), 321-326. https://doi.org/10.18805/ag.R-1838
Beyk-Khormizi, A., Hosseini Sarghein, S., Sarafraz-Ardakani, M., Moshtaghioun, S.M., Mousavi-Kouhi, S.M., & Ganjeali, A. (2022). Ameliorating effect of vermicompost on Foeniculum vulgare under saline condition. Journal of Plant Nutrition, 46, 1601-1615. https://doi.org/10.1080/01904167.2022.2092513
Bi, F., Iqbal, S., Arman, M., Ali, A., & Hassan, M. (2010). Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. Journal of Saudi Chemical Society, 15, 269–273. https://doi.org/10.1016/j.jscs.2010.10.003
Bloomfield, C. (2020). Common pepper plant problems – Pepper plant diseases and pests. Gardening Know How. https://www.gardeningknowhow.com/edible/vegetables/pepper/common-pepper-plant-problems.htm
Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., Macfarlane, S., Peters, D., Susi, P., & Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51, 177–201. https://doi.org/10.1146/annurev-phyto-082712-102346
Cai, L., Zhang, W., Jia, H., Feng, H., Wei, X., Chen, H., Wang, D., Xue, Y., & Sun, X. (2020). Plant-derived compounds: A potential source of drugs against Tobacco mosaic virus. Pesticide biochemistry and physiology, 169, 104589. https://doi.org/10.1016/j.pestbp.2020.104589
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8
Castro, I., Vera, L., Gonzalez, A., & Moenne, A. (2012). Oligo-carrageenans stimulate growth by enhancing photosynthesis, basal metabolism and cell cycle in tobacco plants (var. Burley). Journal of Plant Growth Regulation, 31, 173-185. https://doi.org/10.1007/s00344-011-9229-5
Centeno, G. (2016). Carrageenan plant growth promoter to help small-scale farm in the country. www.pcaarrd.dost.gov.ph/home/portal/index.php
Costa, M.A., do Rêgo, M.M., da Silva, A.G., do Rêgo, E.R., & Barroso, P.A. (2016). Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids. Genetics and molecular research: GMR, 15 2. https://doi.org/10.4238/gmr.15027652
Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23, 371–393. https://doi.org/10.1007/s10811-010-9560-4
Craigie, J. S., MacKinnon, S. L., & Walter, J. A. (2008). Liquid seaweed extracts identified using 1H NMR profiles. Journal of Applied Phycology, 20, 665–671. https://doi.org/10.1007/s10811-007-9232-1
Dagnoko, S., Diarisso, N. Y., Sanogo, P. N., Adetula, O., Nantoume, A. D., & Toure, K. G. (2013). Overview of pepper (Capsicum spp.) breeding in West Africa. African Journal of Agricultural Research, 8(13), 1108-1114.
DA-RF02 [Department of Agriculture-Regional Field Office 02. (2017). Pepper production guide. Value Crops Development Program-Pepper Production in Region 02.
Darvill, A., Auger, C., Bergmann, C., Carlson, R. W., Cheong, J. J., & Eberhard, S. (1992). Oligosaccharins-oligosaccharides that regulate growth, development and defense response in plants. Glycobiology, 2, 181-198. https://doi.org/10.1093/glycob/2.3.181
Djami-Tchatchou, A.T., Ncube, E.N., Steenkamp, P.A., & Dubery, I.A. (2017). Similar, but different: structurally related azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC Plant Biology, 17. https://doi.org/10.1186/s12870-017-1157-5
Doğan, A., Erler, F., Erkan, M.M., Ates, A.O., Sabanci, H.S., & Polat, E. (2016). Microbial-based production system: A novel approach for plant growth and pest and disease management in greenhouse-grown peppers (capsicum annuum l.). Journal of Agricultural Science and Technology, 18, 371-386.
El-sayed, T., Shala, A.Y., & Tawfik, O. (2024). Effect of gamma irradiation on vegetative growth and biochemical changes of cumin plants. Journal of Productivity and Development, 29(1), 35-55. https://doi.org/10.21608/JPD.2024.346236
Ertani, A., Schiavon, M., Muscolo, A., & Nardi, S. (2013). Alfalfa plant-derived biostimulant stimulates short-term growth of salt-stressed Zea mays L. plants. Plant and Soil, 364, 145–158. https://doi.org/10.1007/s11104-012-1335-z
Gatan, M. G., Montefalcon, D. R., Aurigue, F., & Abad, L. (2019). Effect of radiation-modified kappa-carrageenan on the morpho-agronomic characteristics of mungbean (Vigna radiata (L.) R. Wilczek). Philippine Journal of Science, 149, 135-143.
Globe Newswire (2020). World pepper market 2020: Historic review of 2007-2018 with projections to 2025. https://www.globenewswire.com/news-release/2020/02/05/1980349/0/en/World-Pepper-Market-2020-Historic-Review-of-2007-2018-with-Projections-to-2025.html
Hakim, S., Naqqash, T., Nawaz, M.S., Laraib, I., Siddique, M.J., Zia, R., Mirza, M.S., & Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157. https://doi.org/10.3389/fsufs.2021.617157
Hashmi, N., Khan, M., Moinuddin, A., Idrees, M., Khan, Z. H., Ali, A., & Varshney, L. (2012). Depolymerized carrageenan ameliorates growth, physiological attributes, essential oil yield and active constituents of Foeniculum vulgare Mill. Carbohydrate Polymers, 90, 407-412. https://doi.org/10.1016/j.carbpol.2012.05.058
Hien, N. Q., Nagasawa, N., Tham, L. X., Yoshii, F., Dang, H. V., & Mitomo, H. (2000). Growth promotion of plants with depolymerized alginates by irradiation. Radiation Physics and Chemistry, 59, 97–101. https://doi.org/10.1016/S0969-806X(99)00522-8
Iwasaki, K., & Matsubara, Y. (2000). Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Bioscience, Biotechnology, and Biochemistry, 64, 1067–1070. https://doi.org/10.1271/bbb.64.1067
Khan, N., Jamila, N., Choi, J.Y., Nho, E.Y., Hussain, I., & Kim, K.S. (2015). Effect of gamma-irradiation on the volatile flavor profile of fennel (foeniculum vulgare mill). Pak. J. Bot., 47(5), 1839-1846.
Kloareg, B., & Quatrano, R. S. (1988). Structure of the cell walls of marine algae and ecophysiological functions of the skeletal and matrix polysaccharides. Oceanography and Marine Biology Annual Review, 26, 259–315.
Kole, C., Ramanna, R.K., & Ramchiary, N. (2019). The capsicum genome. Compendium of Plant Genomes. Springer.
Kössler, S., Armarego-Marriott, T., Tarkowská, D., Turečková, V., Agrawal, S., Mi, J., de Souza, L.P., Schöttler, M.A., Schadach, A., Fröhlich, A., Bock, R., Al-Babili, S., Ruf, S., Sampathkumar, A., & Moreno, J.C. (2021). Lycopene β-cyclase expression influences plant physiology, development, and metabolism in tobacco plants. Journal of Experimental Botany, 72, 2544–2569. https://doi.org/10.1093/jxb/erab029
Kume, T., Nagasawa, N., & Yoshii, F. (2002). Utilization of carbohydrates by radiation processing. Radiation Physics and Chemistry, 63, 625–627. https://doi.org/10.1016/S0969-806X(01)00558-8
Lima, M.F., Carvalho, S.I., Ragassi, C.F., Bianchetti, L.D., Faleiro, F.G., & Reifschneider, F.J. (2017). Characterization of a pepper collection (Capsicum frutescens L.) from Brazil. Genetics and molecular research, 16 3. https://doi.org/10.4238/gmr16039704
Mathews, C.R., Blaauw, B.R., Dively, G.P., Kotcon, J.B., Moore, J.L., Ogburn, E.C., Pfeiffer, D.G., Trope, T., Walgenbach, J.F., Welty, C., Zinati, G., & Nielsen, A.L. (2017). Evaluating a polyculture trap crop for organic management of Halyomorpha halys and native stink bugs in peppers. Journal of Pest Science, 90, 1245–1255. https://doi.org/10.1007/s10340-017-0838-z
Mercier, L., Lafitte, C., Borderies, G., Briand, X., Esquerre-Tugaye, M.T., & Fournier, L. (2001). The algal polysaccharide carrageenans can act as an elicitor of plant defense. New Phytologist, 149, 43–51. https://doi.org/10.1046/j.1469-8137.2001.00011.x
MMSU [Mariano Marcos State University]. (2018). Carrageenan PGR: A safe and effective yield booster. https://extension.mmsu.edu.ph/news/show/69/carrageenan-pgr-a-safe-and-effective-yield-booster
Moreno, J.C., Mi, J., Agrawal, S., Kössler, S., Turečková, V., Tarkowská, D., Thiele, W., Al‐Babili, S., Bock, R., & Schöttler, M.A. (2020). Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. The Plant journal: for cell and molecular biology, 103(6), 1967-1984. https://doi.org/10.1111/tpj.14909
Mousavi, E.A., Kalantari, K.M., Nasibi, F., & Hakimeh, O. (2018). Effects of carrageenan as elicitor to stimulate defense responses of basil against Cuscuta campestris Yunck. Journal of Plant Interactions, 12(1), 286–294.
Moyo, M., Aremu, A.O., & Amoo, S.O. (2021). Potential of seaweed extracts and humate-containing biostimulants in mitigating abiotic stress in plants. Biostimulants for Crops from Seed Germination to Plant Development, 297-332. https://doi.org/10.1016/B978-0-12-823048-0.00013-7
Mukherjee, A., & Patel, J.S. (2019). Seaweed extract: biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology, 17, 553-558. https://doi.org/10.1007/s13762-019-02442-z
Nabti, E., Jha, B.K., & Hartmann, A. (2017). Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology, 14, 1119-1134. https://doi.org/10.1007/s13762-016-1202-1
Naeem, M., Idrees, M., & Aftab, T. (2014). Employing depolymerized sodium alginate, triacontanol and 28-homobrassinolide in enhancing physiological activities, production of essential oil and active components in Mentha arvensis L. Industrial Crops and Products, 55, 272–279. https://doi.org/10.1016/j.indcrop.2014.01.052
Naeem, M., Idrees, M., Aftab, T., Moinuddin, T., & Varhney, L. (2011). Depolymerized carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydrate Polymers, 87, 1211–1218. https://doi.org/10.1016/j.carbpol.2011.09.002
Nanda, S., Kumar, G., & Hussain, S. (2021). Utilization of seaweed-based biostimulants in improving plant and soil health: current updates and future prospective. International Journal of Environmental Science and Technology, 19, 12839-12852. https://doi.org/10.1007/s13762-021-03568-9
Natsume, M., Kamao, Y., Hirayan, M., & Adachi, J. (1994). Isolation and characterization of alginate derived oligosaccharides with root growth promoting activities. Carbohydrate Research, 258, 187–197. https://doi.org/10.1016/0008-6215(94)84085-7
Ning, J., Kong, F., Lin, B., & Lei, H. (2003). Large-scale preparation of the phytoalexin elicitor glucohexatose and its application as a green pesticide. J. Agric. Food Chem, 51, 987–991. https://doi.org/10.1021/jf020683x
Pamati-An, S., Miraflores, C., Galino, J., & Oberio, Z. (2020). Improving the growth of cherry tomatoes (Solanum lycopersicum L. var. cerasiforme) using irradiated carrageenan. Publiscience, 2, 1.
Pereira-Dias, L., Vilanova, S., Fita, A.M., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6. https://doi.org/10.1038/s41438-019-0132-8
Potin, P., Bouarab, K., Kupper, F., & Kloareg, B. (1999). Oligosaccharide recognition signals and defense reactions in marine plant–microbe interactions. Current Opinion in Microbiology, 2, 276–283. https://doi.org/10.1016/S1369-5274(99)80048-4
Relleve, L. S., Abad, L. V., de la Rosa, A. M., Molenda, M., & Rho, D. (2000). Radiation-modified polysaccharides for agricultural applications. Radiation Physics and Chemistry, 59, 143–148.
Sarfaraz, A., Naeem, M., Nasir, S., Idrees, M., Aftab, T., Hashmi, N., Khan, M.M., Moinuddin, & Varshney, L. (2011). An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). Journal of Medicinal Plants Research, 5, 15-21.
Shukla, P.S., Borza, T., Critchley, A.T., & Prithiviraj, B. (2016). Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Frontiers in Marine Science, 3, 81. https://doi.org/10.3389/fmars.2016.00081
Singh, M., Khan, M., Uddin, M., Naeem, M., & Qureshi, M. I. (2017). Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress. PLOS ONE, 12, e0180129. https://doi.org/10.1371/journal.pone.0180129
Youssef, A. S. M., Zarad, M. M., Abd El-Ghany, N. M., Osman, S. M., & El-Mahdy, T. S. (2020). Effect of organic and bio-fertilization on fruit yield, bioactive constituents, and estragole content in fennel fruits. Agronomy, 10(11), 1727. https://doi.org/10.3390/agronomy10111727
Zia, K.M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International journal of biological macromolecules, 96, 282-301. https://doi.org/10.1016/j.ijbiomac.2016.11.095
Cite this article:
Guzam, X.J.F. & Valdez, M.T. (2024). Growth and yield response of pepper (Capsicum annuum L.) to foliar application of carrageenan plant growth promoter. International Journal of Science, Technology, Engineering and Mathematics, 4(2), 23-50. https://doi.org/10.53378/353069
License:
This work is licensed under a Creative Commons Attribution (CC BY 4.0) International License.