Institute of Industry and Academic Research Incorporated
Register in
IJSTEM Cover Page
International Journal of Science, Technology, Engineering & Mathematics

ISSN 2799-1601 (Print) 2799-161X (Online)

H-index: 7
ICV: 87.82

Physicochemical analysis of Lake Chitu: The origin of Arthrospira Plantesis

Yiglet Mebrat & Damitew Etisa
Volume 3 Issue 3, September 2023

Chitu is a unique poly-extreme soda lake with high alkalinity and salinity that supports Arthrospira plantesis inhabitation. In this study, the physical parameters, chemical analysis, and some heavy metal contents in Lake Chitu were determined using flam and hydride AAS. The physicochemical analysis showed higher variability in anion and cation concentration in the three transactional areas of the lake. The physical parameters of the lake showed no difference and the chemical analysis indicated that pH, carbonate, sulphate, and fluoride concentration were higher in the anthropogenic part of the lake. This shows that human/animal interference and thermal spring water play a role. Of the three transactional areas of the lake, samples from the flooded area of the lake showed the highest alkalinity and bicarbonate concentration, while samples from the protected area showed the lowest alkalinity. The mercury and arsenic contamination was highest in the protected and anthropogenic parts of the lake respectively. The present study strongly suggest that Lake Chitu, the unique habitat for arthrospira plantesis with possible use in diverse applications, which should be further investigated by seasonal sampling.

alkalinity, spirulina platensis, soda lake, anions and cations

Yiglet Mebrat. Corresponding author. Medical Biochemist and researcher. Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia. Corresponding email: yigletmebrat@gmail.com

Damitew Etisa. Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia

Balance Richard (1996). Water Quality Monitoring – A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. 1996 UNEP/WHO. 1-90.

Belkin Shimshon & Boussiba Sammy (1991). Resistance of Spirulina platensis to Ammonia at High pH Values. Plant Cell Physiol. 1991; 32(7): 953-958.

Boros Emil & Kolpakova Marina (2018). A review of the defining chemical properties of soda lakes and pans: An assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS ONE. 2018; 13(8): 1-20.

Bowman S Jeff & Sachs P Julian (2008). Chemical and physical properties of some saline lakes in Alberta and Saskatchewan. Saline Systems. 2008; 4(3): 1-17.

Clarisse L, M.Van Damme, W.Gardner, P.-F. Coheur, C. Clerbaux, S.Whitburn, J. Hadji-Lazaro, D. Hurtmans (2019). Atmospheric ammonia (NH3) emanations from Lake Natron’s saline mudfats. Scientific Reports. 2019; 9: 1-12.

Dar Ishtiyak Ahmad & Singh Anil Kumar (2020). Physico-Chemical Analysis of Aripal Spring in Kashmir Valley, India. JES. 2020; 11(3): 491-498.

Deocampo M. Daniel & Renaut W. Robin (2016). Geochemistry of African Soda Lakes. Springer. 2016; 422:77-93/ DOI 10.1007/978-3-319-28622-8_4

Devanathan J., P. Sandhiyadevi, K.A. Selvam, A. Ram kumar, S. Sureshkumar, S. Selvaraj (2020). Formulation of new low cost medium for mass production of Spirullina sp. Chemistry Reports.2020; 2(1): 35-45.

Dey, U., Chatterjee, S., & Mondal, N. K (2016). Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnology reports. 2016; 10: 1–7.

Dirican Seher (2015). Assessment of Water Quality Using Physico-chemical Parameters of Çamlıgöze Dam Lake in Sivas, Turkey. Ecologia. 2015; 5 (1): 1-7.

Ermias Deribe1, Elias Dadebo & Ole Martin Eklo (2014). Level of Mercury in fish from the Ethiopian rift valley lakes: its implications in dietary exposure. Ehiop. J. Biol. Sci. 2014; 13(1): 25-35.

Foti Mirjam, Dimitry Y. Sorokin, Bart Lomans, Marc Mussman, Elena E. Zacharova, Nikolay V. Pimenov, J. Gijs Kuenen, & Gerard Muyzer (2007). Diversity, Activity, and Abundance of Sulfate-Reducing Bacteria in Saline and Hypersaline Soda Lakes. APPL. ENVIRON. MICROBIOL. 2007; 37(7): 2093–2100.

Gebre-Mariam, Z (2002). The effect of wet and dry seasons on the concentrations ofsolutes and phytoplankton biomass in seven Ethiopian Rift Valley lakes. Limno-logica. 2002; 32: 169–179.

Habib MAB, Parvin M, Huntington TC, Hasan MR (2008). A review on culture production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. 2008; No 1034, Rome, pp 33.

Ibrahim S. S. Abdelnasser, Mohamed A. El-Tayeb, Yahya B. Elbadawi and Ali A. Al-Salamah (2011). Bioreduction of Cr (VI) by potent novel chromate resistant alkaliphilic Bacillus sp. strain KSUCr5 isolated from hypersaline Soda lakes. African Journal of Biotechnology. 2011; 10(37): 7207-7218.

Keskinkan Olcayto, Oya Islk¸ Turan Yılmaz, Behzat Balcl, Leyla H. Uslu, Cagatayhan B. Ersu (2012). Simultaneous Growth of Spirulina platensis and Removal of Hardness in Van Lake

Ogato Tadesse, Demeke Kifleb and Brook Lemma (2015). Underwater light climate, thermal and chemical characteristics of thetropical soda lake Chitu, Ethiopia: Spatio-temporal variations. Limnologica. 2015; 52: 1–10.

Omeroglu E. Esra, Mert Sudagidan and Erdal Ogun (2022). Evaluation of Arsenic Pollution and Anaerobic Arsenic-metabolizing Bacteria of Lake Van, the World’s Largest Soda Lake. Research Squared. 2022; 1-16/ https://doi.org/10.21203/rs.3.rs-1664846/v2

Pant Bonika, Vibha Lohani, Malobica Das Trakroo & Hema Tewari (2017). Study of water quality by physicochemical analysis of a Himalayan lake of Uttarakhand, India. Eco. Env. & Cons. 2017; 23 (2): 1128-1134.

Patil, P.N., D.V. Sawant & R.N (2012). Deshmukh. Physico-chemical parameters for testing of water: A review. Int. J. Environ. Sci. 2012; 3: 1194-1207.

Pierre Fils Rodrigue Magwell, Emile Minyaka, Oscar Wamba Fotsop, Marlyse Solange Leng & Léopold Gustave Lehman (2021). Influence of Sulphate Nutrition on Growth Performance and Antioxidant Enzymes Activities of Spirulina platensis. Journal of Agricultural Science. 2021; 13(10): 115-130.

Powner M. W., B. Gerland, J. D. Sutherland (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009; 459: 239–242.

Raji, M.I.O., Ibrahim, Y.K.E., Tytler, B.A. & Ehinmidu, J.O (2015). Physicochemical Characteristics of Water Samples Collected from River Sokoto, Northwestern Nigeria. Atmospheric and Climate Sciences. 2015; 5: 194-199.

Reimann Clemens, Kjell Bjorvatn, Bjørn Frengstad, Zenebe Melaku, Redda Tekle-Haimanot, Ulrich Siewers (2003). Drinking water quality in the Ethiopian section of the East African Rift Valley I—data and health aspects. The Science of the Total Environment. 2003; 311: 65–80.

Reshetnya Yu Vladimir., Olga V. Nesterova, Oleg I. Admakin, Denis A. Dobrokhotov, Irina N. Avertseva, Samira A. Dostdar, and Dinara F. Khakimova (2019). Evaluation of free and total fluoride concentration in mouthwashes via measurement with ion-selective electrode. BMC Oral Health. 2019; 19(251): 1-8.

Rodrigues Mayla Santos, ívia Seno Ferreira, Attilio Converti, Sunaao Sato, Joao Carlos Monteiro de Carvalho (2011). Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresource Technology. 2011; 102: 6587-6592.

Shapovalova A. A, T. V. Khijniak, T. P. Tourova, G. Muyzer, D. Y. Sorokin (2008). Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles. 2008; 12:619–625.

Sharma Vandana, Yogesh Kumar Walia & Aditya Kumar (2015). Assessment of Physico Chemical Parameters for Analysing Water: A Review. J. Biol. Chem. Chron. 2015; 2(1): 25-33.

Sitotaw B (2014). Microbial Diversity of Two Ethiopian Soda Lakes Having Contrasting Physicochemical Features. Addis Ababa University. 2014, p. 204 PhD thesis.

Sofiyah, E.S & Suryawan, I.W.K (2021). Cultivation of Spirulina platensis and Nannoclhoropsis oculata for Nutrient Removal from Municipal Water. Rekayasa. 2021; 14 (1). 93-97.

Sorokin DY, Kuenen JG, Muyzer G (2011). The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol. 2011; 2(44): 1-16.

Sukumaran Puganeswary, Rosimah Nulit, Normala Halimoon, Sanimah Simoh, Hishamuddin Omar & Ahmad Ismail (2018). Formulation of Cost-effective Medium Using Urea as a Nitrogen Source for Arthrospira platensis Cultivation under Real Environment. Annual Research & Review in Biology. 2018; 22(2): 1-12.

Tadesse Ogato, Demeke Kifle, Tadesse Fetahi & Baye Sitotaw (2014). Evaluation of growth and biomass production of Arthrospira (Spirulina) fusiformis in laboratory cultures using waters from the Ethiopian soda lakes Chitu and Shala. J Appl Phycol. 2014; DOI 10.1007/s10811-014-0251-4.

Tasca, A.L.; Puccini, M (2019). Leather tanning: Life cycle assessment of retanning, fatliquoring and dyeing. J. Clean. Prod. 2019; 226: 720–729.

Tekle-Haimanot Redda, Zenebe Melaku, Helmut Kloos, Clemens Reimann, Wondwossen Fantaye, Legesse Zerihun, Kjell Bjorvatn (2006). The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Science of the Total Environment. 2006; 367:182–190.

Tonera D. Jonathan & Catling C. David (2019). A carbonate-rich lake solution to the phosphate problem of the origin of life. PNAS Latest Articles. 2019; 1-6.

Valdés, N., Rivera-Araya, J., Bijman, J., Escudero, L., Demergasso, C., Fernández, S., Ferrer, A., Chávez, R., & Levicán, G. (2014). Draft genome sequence of Nitrincola sp. strain A-D6, an arsenic-resistant gammaproteobacterium isolated from a salt flat. Genome announcements. 2014; 2(6): e01144-14.

Wang Jing-Ping, Xin-Hong Wang, Jian Chen, Zheng-Hao Fei (2019). Experimental exploration for measurement of ammonia nitrogen in water by Nessler’s reagent colorimetry. Civil and Environmental Research. 2019; 11(1): 58-63.

Windisch Jakob, Christof Plessl, Christiane Christian, Thomas Zechmeister, Franz Jirsa (2022). Unexpected pathways of mercury in an alkaline, biologically productive, saline lake: A mesocosm approach. Journal of Hazardous Materials. 2022; 427: 1-10.

Xu, J.; Bravo, A.G.; Lagerkvist, A.; Bertilsson, S.; Sjöblom, R.; Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environ. Int. 2015; 74: 42–53.

Yu D. Sorokin & Gijs J. Kuenen (2005). Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiology Ecology. 2005; 52: 287–295.

Zhu, W.; Li, Z.; Li, P.; Yu, B.; Lin, C.-J.; Sommar, J.; Feng, X. (2018). Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environ. Pollut. 2018; 242: 718–727.

Cite this article:

Yiglet Mebrat & Damitew Etisa (2023). Physicochemical analysis of Lake Chitu: The origin of Arthrospira Plantesiss. International Journal of Science, Technology, Engineering and Mathematics, 3 (3), 1-17. https://doi.org/10.53378/352996

License:

ai generated, holographic, interface-8578468.jpg
library, people, study-2245807.jpg
bookshelf, books, library-2907964.jpg
Scroll to Top