The control of the invasive species Golden Apple Snail, Pomacea canaliculata, plays a crucial role in preventing the continuing destruction of lowland rice production in the Philippines. However, some molluscicides are unpractical because of their toxic effect on non-target organisms; hence, this study is on the innovative, plant-based extract used to control golden apple snails. Leaves of wild cucumber, Melothria pendula, were collected, air-dried, pulverized, and macerated in ethanol. The extracts were subjected to a water bath at 80 ºC for four hours. Active snails were immersed in solutions of 5mL/L, 10mL/L, and 15mL/L of Melothria pendula leaf extract for 24h and 48h. The snail mortality was determined, and LC50 & LC90 values were calculated. Treatment 3 (15mL/L) had the highest mortality rate, 90% and 97%, among other concentrations used in 24 and 48 hours, respectively. The control group, bayluscide, attained 100% mortality both in 24 hours and 48 hours. Analysis revealed that the LC50 and LC90 values of 48 hours of exposure, 2.26 mL/L and 10.04 mL/L, respectively, showed an increased toxicity level against the snails than that of 24 hours of exposure. Significant differences between the effects of different concentrations on the mortality rate of the snail and days of exposure were noted with p values of 0.000 and 0.032 (p<0.05). Results indicated that Melothria pendula extract is a novel, environment-friendly molluscicide to control Pomacea canaliculata.
Molluscicide, Golden Apple Snails, wild cucumber, leaf extract
Abdel-Haleem, A. A. (2013). Molluscicidal impacts of some Egyptian plant extracts on protein and DNA-contents of two snail-vectors of schistosomiasis, using electrophoresis. The Journal of Basic & Applied Zoology, 66(2), 34–40. https://doi.org/10.1016/j.jobaz.2013.01.002
Abdullah, N. S., Aziz, N. A., & Mailon, R. (2017). Aktiviti moluskisida oleh ekstrak metanol kulit Batang Entada rheedii terhadap perosak padi Pomacea canaliculata (siput gondang emas). Malaysian Journal of Analytical Sciences, 21(1), 46–51. https://doi.org/10.17576/mjas-2017-2101-06
Beressa, T. B., Ajayi, C. O., Peter, E. L., Okella, H., Ogwang, P. E., Anke, W., & Tolo, C. U. (2020). Pharmacology, phytochemistry, and toxicity profiles of Phytolacca dodecandra L’Hér: A Scoping Review. Infectious Diseases: Research and Treatment, 13, 117863372094350. https://doi.org/10.1177/1178633720943509
Chawech, R., Njeh, F., Hamed, N., Damak, M., Ayadi, A., Hammami, H., & Mezghani-Jarraya, R. (2017). A study of the molluscicidal and larvicidal activities of Citrullus colocynthis (L.) leaf extract and its main cucurbitacins against the mollusc Galba truncatula , intermediate host of Fasciola hepatica. Pest Management Science, 73(7), 1473–1477. https://doi.org/10.1002/ps.4479
Chen, L., Li, S., Xiao, Q., Lin, Y., Li, X., Qu, Y., Wu, G., & Li, H. (2021). Composition and diversity of gut microbiota in Pomacea canaliculata in sexes and between developmental stages. BMC Microbiology, 21(1), 200. https://doi.org/10.1186/s12866-021-02259-2
Comia, C. V. B., Datinguinoo, H. D., Magadia, A. S. S., Manalo, R. G., Manigbas, A. J. P., Magbojos-Magtibay, C. R., & Marvin De Villa, L. C. (2018). Molluscicidal effects of Bambusa Blumeana (Bamboo) leaf extracts against the adult stage of the snail vector model Pomacea Canaliculata. The STETH, 12.
Cordoba, M., Millar, J., Foley, I., Roda, A., Adams, G., & Mc Donnell, R. (2020). Fresh cucumber as an attractant for the invasive snail Xerolenta obvia. American Malacological Bulletin, 37, 62. https://doi.org/10.4003/006.037.0203
Dronet, L. (2017). Snail in the garden, guest or pest? The truth about garden snails. Nature&Garden. https://www.nature-and-garden.com/animals/snail.html
El-Sherbini, G.T., Zayed, R.A. & El-Sherbini, E.T. (2010). Molluscicidal activity of some solanum species extracts against the snail Biomphalaria alexandrina. J Parasitol Res, 474360. https://doi.org/10.1155/2009/474360
Esquilla, M. G., Sanchez, C. B., Clyden, J., & Tenorio, B. (2021). Molluscicidal activity of Makabuhay (Tinospora rumphii Boerl) stem ethanolic extract against Radix (Lymnaea) spp. snails. Journal on New Biological Reports, 10(2), 64–71.
Guerrero-Torres, P., Hernández-Sandoval, L., Casas, A. (2022). Melothria pendula L. Melothria pringlei (S.Watson) Mart.Crov. Melothria trilobata Cogn. Cucurbitaceae. In: Casas, A., Blancas Vázquez, J.J. (eds) Ethnobotany of the Mountain Regions of Mexico. Ethnobotany of Mountain Regions. Springer, Cham. https://doi.org/10.1007/978-3-319-77089-5_42-1
He, P., Wang, W., Sanogo, B., Zeng, X., Sun, X., Lv, Z., Yuan, D., Duan, L., & Wu, Z. (2017). Molluscicidal activity and mechanism of toxicity of a novel salicylanilide ester derivative against Biomphalaria species. Parasites & Vectors, 10(1), 383. https://doi.org/10.1186/s13071-017-2313-3
Hollis, L. (2022, August 12). The life cycle of the invasive apple snail. CABI. https://blog.invasive-species.org/2022/08/12/the-life-cycle-of-the-golden-apple-snail/
Hoswalde, E., & Kondapalli, A. (2013). Pomacea canaliculata. Animal Diversity Web. https://animaldiversity.org/accounts/Pomacea_canaliculata/
Hu, Q.-A., Zhang, Y., Guo, Y.-H., Lv, S., Xia, S., Liu, H.-X., Fang, Y., Liu, Q., Zhu, D., Zhang, Q.-M., Yang, C.-L., & Lin, G.-Y. (2018). Small-scale spatial analysis of intermediate and definitive hosts of Angiostrongylus cantonensis. Infectious Diseases of Poverty, 7(1), 100. https://doi.org/10.1186/s40249-018-0482-8
Jay, S. (2022, June 13). Creeping cucumber. Grit. https://www.grit.com/farm-and-garden/creeping-cucumber-zm0z22jazawar/
Joshi, R. C., Cowie, R. H., & Sebastian, L. S. (2017). InvasIve apple snaIls. www.philrice.gov.ph
Kolawale, B. (2021, November 6). What Color is a Snail (Incredible Discoveries). Jebfoods. https://jebfoods.com/what-color-is-a-snail/
Liu, C., Zhang, Y., Ren, Y., Wang, H., Li, S., Jiang, F., Yin, L., Qiao, X., Zhang, G., Qian, W., Liu, B., & Fan, W. (2018). The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. GigaScience, 7(9). https://doi.org/10.1093/gigascience/giy101
Malana, J. C., & Salvador, M. A. (2020). Molluscicidal activity of ground cherry (Physalis Minima Linn.) against Golden Apple Snails (Pomacea Canaliculata Lam). Journal of Critical Review, 7(4), 2323–2329.
Mandefro, B., Mereta, S. T., & Ambelu, A. (2018). Efficacy of Achyranthes aspera (L.) as a Molluscicidal Bait Formulation against Fresh Water Snail Biomphalaria pfeifferi. Evidence-Based Complementary and Alternative Medicine, 2018, 1–7. https://doi.org/10.1155/2018/2718585
Mendes, R.J., Filho, A.A., Noguiera, A., Franca, C.R., Carvalho, I.B., Araujo, K.R., Silva, N.M., Miranda, R., & Rosa, I. (2018). The role of saponins and tannins in the efficiency of molluscicides used to control schistosomiasis. Annals of the 1st MCAA Brazil-Europe Workshop.
Noorshilawati, A. A., Nur Suraya, A., & Siti Rossiyah, S. (2020). Molluscicidal activity of Ipomoea batatas leaf extracts against Pomacea canaliculata (Golden apple snail). Food Research, 4(S5), 131–137. https://doi.org/10.26656/fr.2017.4(S5).003
Nurjanah, N., Nurhayati, T., Hidayat, T., & Ameliawati, M. A. (2019). Profile of macro-micro mineral and carotenoids in Pomacea Canaliculata. Current Research in Nutrition and Food Science Journal, 7(1), 287–294. https://doi.org/10.12944/CRNFSJ.7.1.29
Oyetunde T. Oyeyemi, O.T. (2021). Application of nanotized formulation in the control of snail intermediate hosts of schistosomes. Acta Tropica, 220, 105945. https://doi.org/10.1016/j.actatropica.2021.105945
Picardal, J. P., Picardal, M. T., Panlaan, K. T., Marianne, P., Castaño, L., Peña, L. G., & Abella, K. T. (2018). Molluscicidal activity of the aqueous extract of garlic (Allium sativum L.) bulb against golden apple snail (Pomacea canaliculata L.) Molluscicidal activity of the aqueous extract of garlic (Allium sativum L.) bulb against golden apple snail (Pomacea canaliculata L.). Int. J. Biosci. https://doi.org/10.12692/ijb/13.2.75-87
Prabhakaran, G., Bhore, S., & Ravichandran, M. (2017). Development and evaluation of poly herbal molluscicidal extracts for control of apple snail (Pomacea maculata). Agriculture, 7(3), 22. https://doi.org/10.3390/agriculture7030022
Rangel, L.S., Gomes, K.N.F., Santos, J.A.A., Faria, R.X. (2023). Bioactivity of substances isolated from natural products on mollusks Biomphalaria glabrata (Say, 1818) (Planorbidae): a review. Brazilian Journal of Biology. 83, 266526. https://doi.org/10.1590/1519-6984.266526
Raju, R., Prakash, T., Rahul, R., Poonangadu, S. S., Senthil Kumar, S., Sonaimuthu, P., T. Chua, J. M., & T. Capili, J. (2021). Phytochemical analysis of three common medicinal plants (Gliricidia sepium, Melothria pendula, and Pithecellobium dulce) in the Philippines. Scholars Academic Journal of Biosciences, 9(3), 84–88. https://doi.org/10.36347/sajb.2021.v09i03.004
Rosli, R., Latip, S. N. H. M., Othman, A. S. N., & Nawi, M. (2021). Potential control of pomacea canaliculata using botanical extracts in paddy field. International Transaction Journal of Engineering, 12(9), 1–11. https://doi.org/10.14456/ITJEMAST.2021.181
Ruma, O. C., & Sanchez, N. M. (2016). Ethanolic leaf extract of Jatropha curcas L. as Golden apple snail (Pomaceae canaliculata Lam.) Repellent. Trop. Agri. Develop., 60(4), 286–290.
Saad, A. M., El-Saadony, M. T., El-Tahan, A. M., Sayed, S., Moustafa, M. A. M., Taha, A. E., Ramadan, M. M. (2021). Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi Journal of Biological Sciences, 28(10), 5674-5683. https://doi.org/10.1016/j.sjbs.2021.06.011
Shen, X., Wang, Z., Liu, L., & Zou, Z. (2018). Molluscicidal activity of Solidago canadensis L. extracts on the snail Pomacea canaliculata Lam. Pesticide Biochemistry and Physiology, 149, 104–112. https://doi.org/10.1016/j.pestbp.2018.06.009
Singh, A., & Kumar, S. (2020). Applications of Tannins in Industry. In Tannins – Structural Properties, Biological Properties and Current Knowledge. IntechOpen. https://doi.org/10.5772/intechopen.85984
Singh, B., & Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5(2), 129–151. https://doi.org/10.1007/s13205-014-0220-2
Sisa, M. H., Aspani, F., Massaguni, R., Awang Damit, H., & Joseph, H. (2016). Inhibition of egg hatching of the golden apple snail by synthetic Molluscicides. In Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014) (pp. 463–471). Springer Singapore. https://doi.org/10.1007/978-981-10-0534-3_46
Souza, B. A., Sila, L. C. Da, Chicarino, E. D., & Bessa, E. C. A. (2013). Preliminary phytochemical screening and molluscicidal activity of the aqueous extract of Bidens pilosa Linné (Asteraceae) in Subulina octona (Mollusca, Subulinidade). Anais Da Academia Brasileira de Ciências, 85(4), 1557–1566. https://doi.org/10.1590/0001-37652013111812
Stuart, G. U. (2023, January). Pipinong-gubat, Melothria pendula. Creeping cucumber: Philippine Medicinal Herbs / Alternative Medicine. Stuartxchange. http://www.stuartxchange.com/Pipinong-gubat
Tchounwou, P. B., Englande, A. J., Malek, E. A., Anderson, A. C., & Abdelghani, A. A. (1991). The effects of bayluscide and malathion on the survival of Schistosoma mansoni miracidia. Journal of Environmental Science and Health, Part B, 26(1), 69–82. https://doi.org/10v10.1080/03601239109372724
Thakur, S., Kumar, Y., Sharma, V., & Arya, V. (2019). Plants as Molluscicides. Research Journal of Pharmacognosy and Phytochemistry, 11(1), 8. https://doi.org/10.5958/0975-4385.2019.00002.5
Vehovszky, Á., Horváth, R., Farkas, A., Győri, J., & Elekes, K. (2019). The allelochemical tannic acid affects the locomotion and feeding behaviour of the pond snail, Lymnaea stagnalis, by inhibiting peripheral pathways. Invertebrate Neuroscience, 19(3), 10. https://doi.org/10.1007/s10158-019-0229-7
Wang, W., Huang, S., Liu, F., Sun, Y., Wang, X., Yao, J., Li, S., Liu, Y., Luo, B., Zhang, X., Hu, H., Deng, Z., & Duan, L. (2022). Control of the invasive agricultural pest Pomacea canaliculata with a novel molluscicide: Efficacy and safety to Nontarget species. Journal of Agricultural and Food Chemistry, 70(4), 1079–1089. https://doi.org/10.1021/acs.jafc.1c07847
Yang, Q.-Q., Liu, S.-W., He, C., & Yu, X.-P. (2018). Distribution and the origin of invasive apple snails, Pomacea canaliculata and P. maculata (Gastropoda: Ampullariidae) in China. Scientific Reports, 8(1), 1185. https://doi.org/10.1038/s41598-017-19000-7
Ye, H., Xuan, L., Meng, Y., Xiang, N., Yaojun, Y., Qiang, H., Lanying, H., & Ying, H. (2018). Ethanol extract of Nandina domestica Thunb. leafs: effect on Pomacea canaliculata and growth of Orzya sativa seedlings. Semina: Ciências Agrárias, 39(5), 1887. https://doi.org/10.5433/1679-0359.2018v39n5p1887
Yoshida, K., Yusa, Y., Yamanishi, Y., Matsukura, K., & Wada, T. (2016). Survival, growth and reproduction of the invasive apple snail Pomacea canaliculata in an irrigation canal in southern Japan. Journal of Molluscan Studies, 82(4), 600–602. https://doi.org/10.1093/mollus/eyw024
Zheng, L., Deng, L., Zhong, Y., Wang, Y., Guo, W., & Fan, X. (2021). Molluscicides against the snail-intermediate host of Schistosoma: a review. Parasitology Research, 120(10), 3355–3393. https://doi.org/10.1007/s00436-021-07288-4
Julia Marie P. Viña. Corresponding author. Bachelor of Secondary Education Major in Science. College of Teacher Education, Mindoro State University Bongabong Campus. Email: juliamarievina93@gmail.com.
Nova Mien O. Tuayon. Bachelor of Secondary Education Major in Science. College of Teacher Education. Mindoro State University Bongabong Campus. Email: novamient@gmail.com.
Algeline S. Herrera. Associate Professor V – Mindoro State University Bongabong Campus. Email: algeline.herrera@minsu.edu.ph
Cite this article:
Viña, J.M.P., Tuayon, N.M.O. & Herrera, A.S. (2024). The efficacy of Melothria pendula leaf extract as Novel Molluscicide against Pomacea canaliculata. International Journal of Science, Technology, Engineering and Mathematics, 4(3), 58-84. https://doi.org/10.53378/ijstem.353084
License:
This work is licensed under a Creative Commons Attribution (CC BY 4.0) International License.