Mild steel corrosion adversely impacts various industries, especially in acidic environments, leading to reduced metal efficiency. This study explored the efficacy of mango leaves crude ethanolic extract (MLCEE) as a natural corrosion inhibitor for mild steel. Different concentrations, such as treatment 1 (25%), treatment 2 (50%), treatment 3 (75%), and treatment 4 (100%) MLCEE, were tested, along with a commercial inhibitor (WD-40). The dilution method was utilized to obtain the concentrations and acid/base solutions. The mild steel plate was cut and pre-treated through rapid thermal annealing. The mild steel was then immersed in 1M HCl and 1M NaOH for its corrosion test. Gravimetric weight loss was computed and statistically analyzed using one-way ANOVA and Tukey's HSD Test to determine the treatments’ effectiveness, revealing that the 100% concentration significantly differed from other treatments in both mediums, where it had a p-value of 0.00. Treatment 4 yielded no significant change in the weight of mild steel before (5.05 g) and after (5.01 g) immersion in HCl, and in weight before (4.65 g) and after (4.61 g) immersion in NaOH, as shown in the paired sample t-test, thus it indicates its potential as a metal coating against corrosion activity. This implied that MLCEE is capable of inhibiting corrosion inhibition and can withstand aggressive media. These results may become a basis for future studies covering metal corrosion and plant extract utilization. However, different annealing processes may be considered to promote better adsorption, and other parameters may be added to further explore the efficacy of MLCEE as a potential corrosion inhibitor.
corrosion, mango leaves, natural inhibitor, sodium hydroxide, hydrochloric acid, sustainability, corrosion rate, inhibition efficiency
John Jeric D. de Castro. San Pablo City Science Integrated High School
Franz Kevin B. Manalo. Corresponding author. Master Teacher I, San Pablo City Science Integrated High School. Email: manalofranzkevin@gmail.com
Alam, M. S., & Tanveer, M. S. (2020). Conversion of biomass into biofuel: a cutting-edge technology. Elsevier eBooks (pp. 55–74). https://doi.org/10.1016/b978-0-12-821264-6.00005-x
Ali, N., & Fulazzaky, M. A. (2020). The empirical prediction of weight change and corrosion rate of low-carbon steel. Heliyon, 6(9), e05050. https://doi.org/10.1016/j.heliyon.2020.e05050
Anupama, K., Ramya, K., & Joseph, A. (2016). Electrochemical and computational aspects of surface interaction and corrosion inhibition of mild steel in hydrochloric acid by Phyllanthus amarus leaf extract (PAE). Journal of Molecular Liquids, 216, 146–155. https://doi.org/10.1016/j.molliq.2016.01.019
Benvenuto, M. A. (2015). Industrial inorganic chemistry. De Gruyter eBooks. https://doi.org/10.1515/9783110330335
Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2017). Chemical storage, dosing and control. Elsevier eBooks (pp. 513–552). https://doi.org/10.1016/b978-0-08-100025-0.00012-0
Chellouli, M., Chebabe, D., Dermaj, A., Erramli, H., Bettach, N., Hajjaji, N., Casaletto, M., Cirrincione, C., Privitera, A., & Srhiri, A. (2016). Corrosion inhibition of iron in acidic solution by a green formulation derived from Nigella sativa L. Electrochimica Acta, 204, 50–59. https://doi.org/10.1016/j.electacta.2016.04.015
Da Rocha, J.C, Da Cunha Ponciano Gomes, J.A., & D’Elia, E. (2014). Aqueous extracts of mango and orange peel as green inhibitors for carbon steel in hydrochloric acid solution. Materials Research: American Journal of Materials 17(6), 1581–87. https://doi.org/10.1590/1516-1439.285014
Dominic, O., & Monday, O. (2016). Optimization of the inhibition efficiency of mango extract as corrosion inhibitor of mild steel in 1.0M H2 SO4 using response surface methodology. Journal of Chemical Technology and Metallurgy 51 (3), 302–14.
Ekeke, I. C., Olubiyi S. O., Obasi, E. E., Nzeoma, C., Anyikwa, S. O., Uzoma, H. C & Ngolube, B. C. (2020). Investigation of the inhibitive properties of Mangifera indica (Mango) seed extract on aluminum metal corrosion in 0.5m HCl medium. International Journal of Engineering Applied Science and Technology, 5(4), 515–520. https://doi.org/10.33564/ijeast.2020.v05i04.081
Fan, R., Zhang, W., Wang, Y., Chen, D., & Zhang, Y. (2021). Metal material resistant to hydrochloric acid corrosion. Journal of Physics. Conference Series, 1732(1), 012134. https://doi.org/10.1088/1742-6596/1732/1/012134
Fares, M. M., Maayta, A., & Al-Qudah, M. M. (2012). Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corrosion Science, 60, 112–117. https://doi.org/10.1016/j.corsci.2012.04.002
Fayomi, O. S. I., & Popoola, A. P. I. (2019). Corrosion propagation challenges of mild steel in industrial operations and response to problem definition. Journal of Physics. Conference Series, 1378(2), 022006. https://doi.org/10.1088/1742-6596/1378/2/022006
Gad, S. E. (2024). Lye. Elsevier eBooks (pp. 997–1001). https://doi.org/10.1016/b978-0-12-824315-2.00905-2
Gharbi, O., Thomas, S., Smith, C., & Birbilis, N. (2018). Chromate replacement: what does the future hold? NPJ Materials Degradation, 2(1). https://doi.org/10.1038/s41529-018-0034-5
Gitahi, S. M., Piero, M. N., Mburu, D. N., & Machocho, A. K. (2021). Repellent effects of selected organic leaf extracts of Tithonia diversifolia (Hemsl.) A. Gray and Vernonia lasiopus (O. Hoffman) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). The Scientific World Journal, 1–13. https://doi.org/10.1155/2021/2718629
Habeeb, H. J., Luaibi, H. M., Dakhil, R. M., Kadhum, A. a. H., Al-Amiery, A. A., & Gaaz, T. S. (2018). Development of new corrosion inhibitor tested on mild steel supported by electrochemical study. Results in Physics, 8, 1260–1267. https://doi.org/10.1016/j.rinp.2018.02.015
Hikmawanti, N. P. E., Fatmawati, S., & Asri, A. W. (2021). The effect of ethanol concentrations as the extraction solvent on antioxidant activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. IOP Conference Series. Earth and Environmental Science, 755(1), 012060. https://doi.org/10.1088/1755-1315/755/1/012060
Hoyos-Arbeláez, J., Blandón-Naranjo, L., Vázquez, M., & Contreras-Calderón, J. (2018). Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chemistry, 266, 435–440. https://doi.org/10.1016/j.foodchem.2018.06.044
Jahurul, M., Zaidul, I., Ghafoor, K., Al-Juhaimi, F. Y., Nyam, K., Norulaini, N., Sahena, F., & Omar, A. M. (2015). Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry, 183, 173–180. https://doi.org/10.1016/j.foodchem.2015.03.046
Kalisa, N. D., Muhizi, T., Niyotwizera, J. J. Y., Barutwanayo, J. B., & Nkuranga, J. B. (2020). Kinetics and thermodynamics investigations on corrosion inhibiting properties of coffee husks extract on mild steel in acidic medium. Rwanda Journal of Engineering, Science, Technology and Environment, 3(1). https://doi.org/10.4314/rjeste.v3i1.10
Khasani, N., Kusmono, N., Utami, P., & Budiarto, R. (2021). Corrosion in geothermal facilities: Their causes, effects, mitigation, and worldwide cases. AIP Conference Proceedings. https://doi.org/10.1063/5.0066755
Khodair, Z. T., Khadom, A. A., & Jasim, H. A. (2019). Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views. Journal of Materials Research and Technology/Journal of Materials Research and Technology, 8(1), 424–435. https://doi.org/10.1016/j.jmrt.2018.03.003
Kumar, H., Yadav, V., Anu, N., Saha, S. K., & Kang, N. (2021). Adsorption and inhibition mechanism of efficient and environment friendly corrosion inhibitor for mild steel: Experimental and theoretical study. Journal of Molecular Liquids, 338, 116634. https://doi.org/10.1016/j.molliq.2021.116634
Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R. K., Dhumal, S., Punia, S., Amarowicz, R., & Mekhemar, M. (2021). Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2), 299. https://doi.org/10.3390/antiox10020299
Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., & Ospina, J. C. G. (2019). Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01073
Philippine Statistics Authority. (2023) Major Fruit Crops Quarterly Bulletin, April-June 2023. https://psa.gov.ph/major-fruit-crops/mango
Mazumder, M. a. J. (2020). Global impact of corrosion: Occurrence, cost and mitigation. Global Journal of Engineering Sciences, 5(4). https://doi.org/10.33552/gjes.2020.05.000618
Muthukrishnan, P., Jeyaprabha, B., & Prakash, P. (2017). Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion. Arabian Journal of Chemistry, 10, S2343–S2354. https://doi.org/10.1016/j.arabjc.2013.08.011
Najafi, K., Harpster, T., Kim, H., Mitchell, J., Welch, W., & Karazi, S. (2016). Wafer Bonding. Elsevier eBooks. https://doi.org/10.1016/b978-0-12-803581-8.00527-0
Nesic, S., Sun, W., & Bhuiyan, M. (2017). Corrosion in acid gas solutions. Elsevier eBooks. https://doi.org/10.1016/b978-0-12-803581-8.10476-x
Omran, M. A., Fawzy, M., Mahmoud, A. E. D., & Abdullatef, O. A. (2022). Optimization of mild steel corrosion inhibition by water hyacinth and common reed extracts in acid media using factorial experimental design. Green Chemistry Letters and Reviews, 15(1), 216–232. https://doi.org/10.1080/17518253.2022.2032844
Oyekunle, D., Agboola, O., & Ayeni, A. (2019). Corrosion inhibitors as building evidence for Mild steel: a review. Journal of Physics. Conference Series, 1378(3), 032046. https://doi.org/10.1088/1742-6596/1378/3/032046
Parvez, G. M., & Akanda, K. M. (2019). Foods and arthritis: An overview. Elsevier eBooks (pp. 3–22). https://doi.org/10.1016/b978-0-12-813820-5.00001-5
Quraishi, M. A., Chauhan, D.D., & Saji, V.S. (2021). Heterocyclic biomolecules as green corrosion inhibitors. Journal of Molecular Liquids, 341. https://doi.org/10.1016/j.molliq.2021.117265
Ramezanzadeh, M., Bahlakeh, G., & Ramezanzadeh, B. (2019). Study of the synergistic effect of Mangifera indica leaves extract and zinc ions on the mild steel corrosion inhibition in simulated seawater: Computational and electrochemical studies. Journal of Molecular Liquids, 292, 111387. https://doi.org/10.1016/j.molliq.2019.111387
Ramezanzadeh, M., Bahlakeh, G., Sanaei, Z., & Ramezanzadeh, B. (2019). Corrosion inhibition of mild steel in 1 M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: Electrochemical, molecular dynamics, Monte Carlo and ab initio study. Applied Surface Science, 463, 1058–1077. https://doi.org/10.1016/j.apsusc.2018.09.029
Rao, U. M., Dudekula, J. B., Bhatt, S., Kumar, M. S., Shah, K., Chauhan, N. S., & Shilpi, S. (2023). Role of phytopharmaceuticals in inflammatory disorders. Elsevier eBooks (pp. 433–451). https://doi.org/10.1016/b978-0-323-99125-4.00002-0
Rashid, M. M., Cho, K. H., & Chung, G. (2013). Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film. Applied Surface Science, 279, 23–30. https://doi.org/10.1016/j.apsusc.2013.03.112
Sabzi, R., & Arefinia, R. (2019). Investigation of zinc as a scale and corrosion inhibitor of carbon steel in artificial seawater. Corrosion Science, 153, 292–300. https://doi.org/10.1016/j.corsci.2019.03.045
Saha, A. (2016). Boiler tube failures. Elsevier eBooks (pp. 49–68). https://doi.org/10.1016/b978-0-08-100116-5.00003-x
Sanni, O., Fayomi, O. S. I., & Popoola, A. P. I. (2019). Eco-friendly inhibitors for corrosion protection of stainless steel: An overview. Journal of Physics. Conference Series, 1378(4), 042047. https://doi.org/10.1088/1742-6596/1378/4/042047
Sekhar, V., Umakrishna, K., Rao, V. S., & Satyavani, C. (2019). Completely Randomised Design (CRD) analysis – by manual and MS-Excel. International Journal of Current Microbiology and Applied Sciences, 8(03), 954–959. https://doi.org/10.20546/ijcmas.2019.803.114
Shanmugam, H., Nataraj, S., Govindaraj, O., & Thangavel, T. (2023). Plant-based and microbes-mediated synthesis of nanobioconjugates and their applications. In Comprehensive analytical chemistry, 102, 123–162. https://doi.org/10.1016/bs.coac.2023.02.003
Singh, D. K., Kumar, S., Udayabhanu, G., & John, R. P. (2016). 4(N,N-dimethylamino) benzaldehyde nicotinic hydrazone as corrosion inhibitor for mild steel in 1 M HCl solution: An experimental and theoretical study. Journal of Molecular Liquids, 216, 738–746. https://doi.org/10.1016/j.molliq.2016.02.012
Srivastava, A., Shekhar, S., Rai, P., & Ayub, A. (2016). Analysis of welding joints and processes. International Journal of Computer Applications, 20-26.
Sun, Y., Li, H., Yang, J., & Zhang, J. (2023). Effects of temperature and pressure on corrosion behavior of HVOF-Sprayed FE-Based amorphous coating on the MG-RE alloy for dissolvable plugging tools. Materials, 16(3), 1313. https://doi.org/10.3390/ma16031313
Thakur, A., Assad, H., Kaya, S., & Kumar, A. (2022). Plant extracts as environmentally sustainable corrosion inhibitors II. Eco-Friendly Corrosion Inhibitors, 283–310. https://doi.org/10.1016/b978-0-323-91176-4.00017-9
Umoren, S. A., Solomon, M. M., & Saji, V. S. (2022). Pectin and derivatives. In Polymeric Materials in Corrosion Inhibition (pp. 255–269). https://doi.org/10.1016/b978-0-12-823854-7.00012-6
Veedu, K. K., Kalarikkal, T. P., Jayakumar, N., & Gopalan, N. K. (2019). Anticorrosive Performance of Mangifera indica L. Leaf Extract-Based Hybrid Coating on Steel. ACS Omega, 4(6), 10176–10184. https://doi.org/10.1021/acsomega.9b00632
Yu, Y., Shironita, S., Souma, K., & Umeda, M. (2018). Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution. Heliyon, 4(11), e00958. https://doi.org/10.1016/j.heliyon.2018.e00958
Zarras, P., & Stenger-Smith, J. D. (2015). Smart inorganic and organic pretreatment coatings for the inhibition of corrosion on Metals/Alloys. In Intelligent Coatings for Corrosion Control (pp. 59–91). https://doi.org/10.1016/b978-0-12-411467-8.00003-9
Cite this article:
De Castro, J.J.D. & Manalo, F.K.B (2024). Mangifera Indica leaves crude ethanolic extract as a corrosion inhibitor for mild steel in acidic and basic media. International Journal of Science, Technology, Engineering and Mathematics, 4(3), 30-57. https://doi.org/10.53378/ijstem.353081
License:
This work is licensed under a Creative Commons Attribution (CC BY 4.0) International License.