We studied the spatial patterns of Dengue Hemorrhagic Fever (DHF) transmission in Baubau, a city in Southeast Sulawesi, Indonesia. DHF is a serious disease caused by the dengue virus and spread by Aedes mosquitoes. We used Moran's Index, a spatial analysis tool, to create a DHF spread map for Baubau's sub-districts. We found different patterns of DHF risk, such as: cold spots, Betoambari and Batupoaro had lower DHF cases, but they were vulnerable to infection from nearby areas; hot spot, Murhum had higher DHF cases and could transmit the disease to neighboring areas; and low risk, Bungi had the lowest DHF risk and was resilient to infection. Our findings suggest that preventive measures should be tailored to the specific risk level of each sub-district. Our study also provides useful guidance for controlling DHF transmission in Baubau and beyond. Our research is a beacon of hope for a safer and healthier future.
dengue hemorrhagic fever, thematic map, Moran’s I, spatial analysis, Aedes mosquitos
Agusrawati. M.S. in Statistics, Lecturer
Fithria. M.S. in Epidemiology, Lecturer, Faculty of Public Health, Halu Oleo University, Kendari, Indonesia
Gusti Ngurah Adhi Wibawa. Ph.D. Assoc. Professor, Department of Statistics, Halu Oleo University, Kendari, Indonesia
Ruslan. Ph.D. Assoc. Professor, Department of Agricultural Technology, Halu Oleo University, Kendari, Indonesia
Hamirul Hadini, Baharuddin. Ph.D. Assoc. Professor, Department of Statistics, Halu Oleo University, Kendari, Indonesia
Irma Yahya. M.S. in Statistics, Lecturer
Bahriddin Abapihi. Corresponding author. Ph.D. Assoc. Professor, Department of Statistics, Halu Oleo University, Kendari, Indonesia. e-mail: rektorunhalu@gmail.com
Adrizain, R., Setiabudi, D. & Chairulfatah, A. (2018). Hospital-based Surveillance: Accuracy, Adequacy, and Timeliness of Dengue Case Report in Bandung, West Java, Indonesia of 2015. Journal of Global Infectious Diseases, 10(4), 201-205. DOI: 10.4103/jgid.jgid_108_17
Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2): 93-115.
Badan Pusat Statistik (2020). Baubau City in Figures 2020. Badan Pusat Statistik Kota Baubau.
Bannister-Tyrrell, M., Hillman, A., Indriani, C., et al (2023). Utility of surveillance data for planning for dengue elimination in Yogyakarta, Indonesia: a scenario-tree modelling approach. BMJ Global Health, 8:e013313.
Bente, D. A., & Rico-Hesse, R. (2006). Models of dengue virus infection. Drug Discovery Today. Disease Models, 3(1): 97-103. doi: 10.1016/j.ddmod.2006.03.014.
Bivand, R., Müller, W. G. & Reder, M. (2009). Power calculations for global and local Moran’s I. Computational Statistics and Data Analysis, 53(8) pp. 2859-2872. https://doi.org/10.1016/j.csda.2008.07.021.
Brady, O.J., Kharisma, D.D., Wilastonegoro, N.N. et al. (2020). The cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: a modelling study. BMC Med, 18, 186 (2020). https://doi.org/10.1186/s12916-020-01638-2
Camargo, F. A., Oliveira, T. M., Rodrigues, D. S., Mancera, P., & Santos, F. L. P. (2022). A Mathematical Model for Accessing Dengue Hemorrhagic Fever in Infants. Trends in Computational and Applied Mathematics, 23 (1): 101-115. doi: 10.5540/tcam.2022.023.01.00101.
Cavany, S., Huber, J. H., Wieler, A., Tran, Q. M., Alkuzweny, M., Elliott, M., España, G., Moore, S. M., & Perkins, T. A. (2023). Does ignoring transmission dynamics lead to underestimation of the impact of interventions against mosquito-borne disease? BMJ global health, 8(8), e012169. https://doi.org/10.1136/bmjgh-2023-012169
Chen, Y. (2009). Reconstructing the mathematical process of spatial autocorrelation based on Moran’s statistics. Geographical Research, 28(6): 1449-1463. doi: 10.11821/yj2009060002.
Chew, T., Pakasi, T.A. & Taylor-Robinson, A. (2019). Dengue infection in Indonesia: Improved clinical profiling is needed to better inform patient management and disease outbreak control. CQUniversity. Journal contribution. https://hdl.handle.net/10018/1321356
Derouich, M., Boutayeb, A., & Twizell, E. H. (2003). A model of dengue fever. Biomedical Engineering Online, 2(4) https://doi.org/10.1186/1475-925X-2-4.
Dewi, B., Nainggolan, L., Sudiro, T., Chenderawasi, S., Goentoro, P. & Sjatha, F. (2021). Circulation of Various Dengue Serotypes in a Community-Based Study in Jakarta, Indonesia. Japanese Journal of Infectious Diseases. 74(1), 17-22. https://doi.org/10.7883/yoken.JJID.2019.431
Dhewantara, P., Marina, R., Puspita, T., Ariati, Y., Purwanto, E., Hananto, M., Hu, W. & Soares Magalhaes, R.J. (2019). Spatial and temporal variation of dengue incidence in the island of Bali, Indonesia: An ecological study. Travel Medicine and Infectious Disease. 32, 101437. https://doi.org/10.1016/j.tmaid.2019.06.008
Eryando, T., Susanna, D., Lasut, D., & Pratiwi, D. (2013). Dengue Hemorrhagic Fever Mapping: Study Case in Karawang District, West Java Indonesia. Makara Journal of Health Research, 17(2). https://doi.org/10.7454/msk.v17i2.3032
Esteva, L. & Vargas, C. (1999). A model for dengue disease with variable human population. Journal of Mathematical Biology, 38(3): 220–240. https://doi.org/10.1007/s002850050147.
Faridah, I.N., Dania, H., Maliza, R., Chou, W.H., Wang, W.H., Chen, Y.H., Perwitasari, D.A. & Chang, W.C. (2023). Genetic Association Studies of MICB and PLCE1 with Severity of Dengue in Indonesian and Taiwanese Populations. Diagnostics. 13(21):3365. https://doi.org/10.3390/diagnostics13213365
Fuadzy, H., Widawati, M., Astuti, E., Prasetyowati, H., Hendri, J., Nurindra, R., & Hodijah, D. (2020). Risk factors associated with Dengue incidence in Bandung, Indonesia: a household based case-control study. Health Science Journal of Indonesia, 11(1), 45-51. https://doi.org/10.22435/hsji.v11i1.3150
Gonçalves, D., de Queiroz Prado, R., Xavier, E.A., de Oliveira, N. C., da Matta Guedes, P. M., da Silva, J. S., Moraes Figueiredo, L. T., & Aquino, V. (2012). Imunocompetent Mice Model for Dengue Virus Infection. The Scientific World Journal, 2012, Article ID 525947 https://doi.org/10.1100/2012/525947.
Griffith, D.A. (2020). Spatial Autocorrelation. International Encyclopedia of Human Geography (Second Edition), pp. 355-366. https://doi.org/10.1016/B978-0-08-102295-5.10596-7.
Halide, H. & Ridd, P. (2008). A predictive model for Dengue Hemorrhagic Fever epidemics. International Journal of Environmental Health Research, 18(4): 253-265. https://doi.org/10.1080/09603120801966043.
Harapan, H., Michie, A., Mudatsir, M., Sasmono, R. T., & Imrie, A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Research Notes, 12(1), [350]. https://doi.org/10.1186/s13104-019-4379-9
Harapan, H., Michie, A., Yohan, B., Shu, P., Mudatsir, M., Sasmono, R. & Imrie, A. (2019). Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Reviews in Medical Virology. 29(4), 2037. https://doi.org/10.1002/rmv.2037
Haryanto, B. (2018). Indonesia Dengue Fever: Status, Vulnerability, and Challenges. IntechOpen. doi: 10.5772/intechopen.82290
Hasana & Susanna, D. (2019). Weather Implication for Dengue Fever in Jakarta, Indonesia 2008-2016. KnE Life Sciences, 4(10), 184–192. https://doi.org/10.18502/kls.v4i10.3719
Indriani, C., Ahmad, R. A., Wiratama, B. S., Arguni, E., Supriyati, E., Sasmono, R. T., Kisworini, F. Y., Ryan, P. A., O’Neill, S. L., Simmons, C. P., Utarini, A., & Anders, K. L. (2018). Baseline Characterization of Dengue Epidemiology in Yogyakarta City, Indonesia, before a Randomized Controlled Trial of Wolbachia for Arboviral Disease Control. The American Journal of Tropical Medicine and Hygiene, 99(5), 1299-1307. https://doi.org/10.4269/ajtmh.18-0315
Indriani, C., Tanamas, S.K., Khasanah, U., Ansari, M., Rubangi, Tantowijoyo, W., Ahmad, R. Dufault, S., Jewell, N.P. Utarini, A. Simmons, C.P. & Anders, K.L. (2023). Impact of randomised wmel Wolbachia deployments on notified dengue cases and insecticide fogging for dengue control in Yogyakarta City. Global Health Action, 16(1). DOI: 10.1080/16549716.2023.2166650
Kettani, D., & Moulin, B. (1999). A Spatial Model Based on the Notions of Spatial Conceptual Map and of Object’s Influence Areas. In: Freksa, C., Mark, D.M. (eds) Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science. Lecture Notes in Computer Science, Vol. 1661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48384-5_26.
Kurniawan, W., Suwandono, A., Widjanarko, B., Suwondo, A., Artama, W.T., Shaluhiyah, Z., Adi, M.S. & Sofro, M.A.U. (2021). The effectiveness of the One Health SMART approach on dengue vector control in Majalengka, Indonesia”, Journal of Health Research, 35(1), 63-75. https://doi.org/10.1108/JHR-07-2019-0162
Maula, A., Fuad, A. & Utarini, A. (2018). Ten-years trend of dengue research in Indonesia and South-east Asian countries: a bibliometric analysis. Global Health Action, 11(1). DOI: 10.1080/16549716.2018.1504398
Maulana, M.R., Yudhastuti, R., Lusno, M., Mirasa, Y., Haksama, S. & Husnina, Z. (2023). Climate and visitors as the influencing factors of dengue fever in Badung District of Bali, Indonesia. International Journal of Environmental Health Research, 33:9, 924-935, DOI: 10.1080/09603123.2022.2065249
Mukhsar, Wibawa, G.N.A, Tenriawaru, A., Usman, I., Firihu, M. Z., Variani, V. I., Mansur, A. B. F, Basori, A. H. (2023). Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping. MethodsX 10 (2023) 101979. https://doi.org/10.1016/j.mex.2022.101979.
Mukhsar, Sani, A., Abapihi, B., Cahyono, E. (2021). Spatio-temporal bayesian stochastic sir-si model for relative risk disease dhf mapping. Journal of Applied Probability and Statistics, 16(1), pp. 47–57.
Nainggolan, L., Dewi, B. & Hakiki, A. (2023). Association of viral kinetics, infection history, NS1 protein with plasma leakage among Indonesian dengue infected patients. PLoS ONE. 18(5), 0285087.
Negreiros, J., Painho, M., Aguilar, F., & Aguilar, M. A. (2010). A comprehensive framework for exploratory spatial data analysis: Moran location and variance scatterplots. International Journal of Digital Earth, 3(2). https://doi.org/10.1080/17538940903253898.
Nirwantono, J. P., Trinugroho, D., Sudigyo, A. A., Hidayat & B. Pardamean (2022). Time-series Analysis of Correlation between Climatic Parameters and Dengue Fever in Indonesia. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 161-165. doi: 10.1109/ICIMCIS56303.2022.10017843.
Nuraini, N., & Tasman, H. (2012). Simulation Model for Dengue Infection. International Journal of Basic & Applied Sciences, 12(01): 26 – 30.
O’Reilly, K.M., Hendrickx, E., Kharisma, D. et al. (2019). Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Med 17, 172. https://doi.org/10.1186/s12916-019-1396-4
Pasaribu, A., Tsheten, T., Yamin, M. (2021). Spatio-Temporal Patterns of Dengue Incidence in Medan City, North Sumatera, Indonesia. Tropical Medicine and Infectious Disease. 6(1), 30.
Rakhmani, A.N., Limpanont, Y., Kaewkungwal, J. et al. (2018). Factors associated with dengue prevention behaviour in Lowokwaru, Malang, Indonesia: a cross-sectional study. BMC Public Health 18, 619. https://doi.org/10.1186/s12889-018-5553-z
Ramadona, A.L., Tozan, Y., Wallin, J., Lazuardi, L., Utarini, A. & Rocklöv, J. (2023). Predicting the dengue cluster outbreak dynamics in Yogyakarta, Indonesia: a modelling study. The Lancet Regional Health – Southeast Asia, 15, 100209. https://doi.org/10.1016/j.lansea.2023.100209
Ren, T., Long, Z., Zhang, R, & Chen, Q. (2014). Moran’s I test of spatial panel data model — Based on bootstrap method. Economic Modeling, 41(August 2014): 9-14. https://doi.org/10.1016/j.econmod.2014.04.022.
Rey, S. J., & Anselin, L. (2010). PySAL: A Python library of spatial analytical methods. In Handbook of Applied Spatial Analysis (pp. 175-193). Springer.
Sani, A., Abapihi, B., Mukhsar, Usman, I., Rahman, G.A. (2023). Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA. International Journal of Modelling and Simulation, 43(6), pp. 939–951 https://doi.org/10.1080/02286203.2022.2139108.
Saputra, M. & Oktaviannoor, H. (2017). One Health Approach to Dengue Haemorrhagic Fever Control in Indonesia: A Systematic Review. 1st International Conference on Global Health, KnE Life Sciences, 201–221. DOI 10.18502/kls.v4i1.1382
Sasmono RT, Santoso MS, Pamai YWB, Yohan B, Afida AM, Denis D, Hutagalung IA, Johar E, Hayati RF, Yudhaputri FA, Haryanto S, Stubbs SCB, Blacklaws BA, Myint KSA and Frost SDW (2020) Distinct Dengue Disease Epidemiology, Clinical, and Diagnosis Features in Western, Central, and Eastern Regions of Indonesia, 2017–2019. Front. Med. 7:582235. doi: 10.3389/fmed.2020.582235
Setiawati, M. (2019) The Effect of Climate Variables on Dengue Burden in Indonesia: A Case Study from Medan City. Journal of Geoscience and Environment Protection, 7, 80-94. doi: 10.4236/gep.2019.710007.
Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2005). Thematic Cartography and Geovisualization. Pearson.
Smith, J. (2020). Geographic Information Systems in Environmental Research. Environmental Science Journal, 25(4): 301-315.
Smith, N. (2021). Groundbreaking trial sees dengue fever cases fall by 77pc in Indonesia. Available at: https://www.telegraph.co.uk/global-health/science-and-disease/groundbreaking-trial-sees-dengue-fever-cases-fall-77pc-indonesia/
Sulistyawati, S. (2020). Dengue Prevention and Control in Indonesia: a case study in Yogyakarta City (PhD dissertation, Umeå universitet). Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-176142
Sulistyawati, S., Dwi Astuti, F., Rahmah Umniyati, S., Tunggul Satoto, T.B., Lazuardi, L., Nilsson, M., Rocklov, J., Andersson, C., & Holmner, Å. (2019). Dengue Vector Control through Community Empowerment: Lessons Learned from a Community-Based Study in Yogyakarta, Indonesia. International Journal of Environmental Research and Public Health. 2019; 16(6):1013. https://doi.org/10.3390/ijerph16061013
Sulistyawati, S., Yuliansyah, H., Sukesi, T. W., Khusna, A. N., Mulasari, S. A., Tentama, F., Sudarsono, B., & Ghozali, F. A. (2023). Rapid Appraisals of the Transformation Strategy Required to Sustain Dengue Vector Control During and After the COVID-19 Pandemic in Indonesia. Risk management and healthcare policy, 16, 93–100. https://doi.org/10.2147/RMHP.S391933
Suryadi, N.N., Taturaa, D., Marsha, S. Santosoc, R.F., Hayatic, B.J., Kepelb, B.Y., R. Tedjo Sasmono (2021). Outbreak of severe dengue associated with DENV-3 in the city of Manado, North Sulawesi, Indonesia. International Journal of Infectious Diseases. 106 (2021), 185–196. https://doi.org/10.1016/j.ijid.2021.03.065
Suwantika, A.A., Kautsar, A.P., Supadmi, W., Zakiyah, N., Abdulah, R., Ali, M. & Postma, M.J. (2020). Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia-Infected Mosquitos and Health Education. International Journal of Environmental Research and Public Health. 2020; 17(12):4217. https://doi.org/10.3390/ijerph17124217
Syukri, M., & Wardiah, R. (2023). Spatial Autocorrelation of Dengue Haemorrhagic Fever (DHF) Cases Using the Moran’s Index Method in Muaro Jambi District, Indonesia. Indonesian Journal of Global Health Research, 5(2), 361-372. https://doi.org/10.37287/ijghr.v5i2.1753.
Tolinggi, S. & Dengo, M. (2019). Prediction Model of Dengue Hemorrhagic Fever Incidence Using Climatic Factors in Kabupaten Gorontalo. Jurnal Kesehatan Lingkungan, 11(4): 348–353. https://doi.org/10.20473/jkl.v11i4.2019.348-353.
Triastuti. N.J. (2023). The Comparison of Dengue Haemorrhagic Fever Cases in Indonesia During the COVID-19 Pandemic. J. Med. Chem. Sci., 2023, 6(6) 1336-1343. https://doi.org/10.26655/JMCHEMSCI.2023.6.13
Utama, I. M. S., Lukman, N., Sukmawati, D. D., Alisjahbana, B., Alam, A., Murniati, D., Utama, I. M. G. D. L., Puspitasari, D., Kosasih, H., Laksono, I., Karyana, M., Karyanti, M. R., Hapsari, M. M. D. E. A. H., Meutia, N., Liang, C. J., Wulan, W. N., Lau, C. Y., & Parwati, K. T. M. (2019). Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLoS neglected tropical diseases, 13(10), e0007785. https://doi.org/10.1371/journal.pntd.0007785
Utama, I.M.S., Lukman, N., Sukmawati, D.D., Alisjahbana, B., Alam, A., Murniati, D, et al. (2019). Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLoS Negl Trop Dis, 13(10): e0007785. https://doi.org/10.1371/journal.pntd.0007785
Utarini, C., Indriani, R.A., Ahmad, W., Tantowijoyo, E., Arguni, M.R., Ansari, E., Supriyati, D.S., Wardana, Y., Meitika, I., Ernesia, I., Nurhayati, E., Prabowo, B., Andari, B.R., Green, L., Hodgson, Z., Cutcher, E., Rancès, P.A., Ryan, S.L., O’Neill, S.M., Dufault, S.K., Tanamas, N.P., Jewell, K.L., Anders, & C.P. Simmons (2021). Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue A. N Engl J Med, 384:2177-86. DOI: 10.1056/NEJMoa2030243\
Vogl, C. & Mikula, L. C. (2021). A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection. Theoretical Population Biology 139 (2021) 1–17 https://doi.org/10.1016/j.mex.2022.101979.
Wahyono, T., Nealon, J., Beucher, S., Prayitno, A., Moureau, A., Nawawi, S., & Nadjib, M. (2017). Indonesian dengue burden estimates: Review of evidence by an expert panel. Epidemiology and Infection, 145(11), 2324-2329. doi:10.1017/S0950268817001030
Xu, X. & Lee, L. (2019). Theoretical foundations for spatial econometric research. Regional Science and Urban Economics, 76 (May 2019): 2-12. https://doi.org/10.1016/j.regsciurbeco.2018.04.002.
Yu, L. & Chang, J. (2021). Application of Hybrid Moran’s I Index and SE Model on the spatial Impact and time dradient changes of regional development. Journal of Physics: Conference Series. 1941 (012047). doi: 10.1088/1742-6596/1941/1/012047.
Cite this article:
Agusrawati, Fithria, Gusti Ngurah Adhi Wibawa, Ruslan, Hamirul Hadini, Baharuddin, Irma Yahya, & Bahriddin Abapihi (2023). Spatial analysis on the spread of Dengue Hemorrhagic Fever in Baubau, Southeast Sulawesi, Indonesia. International Journal of Science, Technology, Engineering and Mathematics, 3 (4), 51-72. https://doi.org/10.53378/353033
License:
This work is licensed under a Creative Commons Attribution (CC BY 4.0) International License.